{"title":"FlowBack: A Generalized Flow-Matching Approach for Biomolecular Backmapping.","authors":"Michael S Jones, Smayan Khanna, Andrew L Ferguson","doi":"10.1021/acs.jcim.4c02046","DOIUrl":null,"url":null,"abstract":"<p><p>Coarse-grained models have become ubiquitous in biomolecular modeling tasks aimed at studying slow dynamical processes such as protein folding and DNA hybridization. These models can considerably accelerate sampling but it remains challenging to accurately and efficiently restore all-atom detail to the coarse-grained trajectory, which can be vital for detailed understanding of molecular mechanisms and calculation of observables contingent on all-atom coordinates. In this work, we introduce FlowBack as a deep generative model employing a flow-matching objective to map samples from a coarse-grained prior distribution to an all-atom data distribution. We construct our prior distribution to be agnostic to the coarse-grained map and molecular type. A protein-specific model trained on ∼65k structures from the Protein Data Bank achieves state-of-the-art performance on structural metrics compared to previous generative and rules-based approaches in applications to static PDB structures, all-atom simulations of fast-folding proteins, and coarse-grained trajectories generated by a machine-learned force field. A DNA-protein model trained on ∼1.5k DNA-protein complexes achieves excellent reconstruction and generative capabilities on static DNA-protein complexes from the Protein Data Bank as well as on out-of-distribution coarse-grained dynamical simulations of DNA-protein complexation. FlowBack offers an accurate, efficient, and easy-to-use tool to recover all-atom structures from coarse-grained molecular simulations with higher robustness and fewer steric clashes than previous approaches. We make FlowBack freely available to the community as an open source Python package.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"672-692"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02046","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coarse-grained models have become ubiquitous in biomolecular modeling tasks aimed at studying slow dynamical processes such as protein folding and DNA hybridization. These models can considerably accelerate sampling but it remains challenging to accurately and efficiently restore all-atom detail to the coarse-grained trajectory, which can be vital for detailed understanding of molecular mechanisms and calculation of observables contingent on all-atom coordinates. In this work, we introduce FlowBack as a deep generative model employing a flow-matching objective to map samples from a coarse-grained prior distribution to an all-atom data distribution. We construct our prior distribution to be agnostic to the coarse-grained map and molecular type. A protein-specific model trained on ∼65k structures from the Protein Data Bank achieves state-of-the-art performance on structural metrics compared to previous generative and rules-based approaches in applications to static PDB structures, all-atom simulations of fast-folding proteins, and coarse-grained trajectories generated by a machine-learned force field. A DNA-protein model trained on ∼1.5k DNA-protein complexes achieves excellent reconstruction and generative capabilities on static DNA-protein complexes from the Protein Data Bank as well as on out-of-distribution coarse-grained dynamical simulations of DNA-protein complexation. FlowBack offers an accurate, efficient, and easy-to-use tool to recover all-atom structures from coarse-grained molecular simulations with higher robustness and fewer steric clashes than previous approaches. We make FlowBack freely available to the community as an open source Python package.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.