Mohammadamin Tavakoli, Yin Ting T Chiu, Ann Marie Carlton, David Van Vranken, Pierre Baldi
{"title":"Chemically Informed Deep Learning for Interpretable Radical Reaction Prediction.","authors":"Mohammadamin Tavakoli, Yin Ting T Chiu, Ann Marie Carlton, David Van Vranken, Pierre Baldi","doi":"10.1021/acs.jcim.4c01901","DOIUrl":null,"url":null,"abstract":"<p><p>Organic radical reactions are crucial in many areas of chemistry, including synthetic, biological, and atmospheric chemistry. We develop a predictive framework based on the interaction of molecular orbitals that operates on mechanistic-level radical reactions. Given our chemistry-aware model, all predictions are provided with different levels of interpretability. Our models are trained and evaluated using the RMechDB database of radical reaction steps. Our model predicts the correct orbital interaction and products for 96% of the test reactions in RMechDB. By chaining these predictions, we perform a pathway search capable of identifying all intermediates and byproducts of a radical reaction. We test the pathway search on two classes of problems in atmospheric and polymerization chemistry. RMechRP is publicly available online at https://deeprxn.ics.uci.edu/rmechrp/.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01901","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic radical reactions are crucial in many areas of chemistry, including synthetic, biological, and atmospheric chemistry. We develop a predictive framework based on the interaction of molecular orbitals that operates on mechanistic-level radical reactions. Given our chemistry-aware model, all predictions are provided with different levels of interpretability. Our models are trained and evaluated using the RMechDB database of radical reaction steps. Our model predicts the correct orbital interaction and products for 96% of the test reactions in RMechDB. By chaining these predictions, we perform a pathway search capable of identifying all intermediates and byproducts of a radical reaction. We test the pathway search on two classes of problems in atmospheric and polymerization chemistry. RMechRP is publicly available online at https://deeprxn.ics.uci.edu/rmechrp/.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.