Boosting the energy storage performance of BCZT-based capacitors by constructing a Schottky contact.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-01-10 DOI:10.1039/d4mh01651c
Zixiong Sun, Haoyang Xin, Liming Diwu, Zhanhua Wang, Ye Tian, Hongmei Jing, Xiuli Wang, Wanbiao Hu, Yongming Hu, Zhuo Wang
{"title":"Boosting the energy storage performance of BCZT-based capacitors by constructing a Schottky contact.","authors":"Zixiong Sun, Haoyang Xin, Liming Diwu, Zhanhua Wang, Ye Tian, Hongmei Jing, Xiuli Wang, Wanbiao Hu, Yongming Hu, Zhuo Wang","doi":"10.1039/d4mh01651c","DOIUrl":null,"url":null,"abstract":"<p><p>Multilayer thin films composed of dielectric Ba<sub>0.7</sub>Ca<sub>0.3</sub>Zr<sub>0.2</sub>Ti<sub>0.8</sub>O<sub>3</sub> (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film. This redistribution delays the breakdown of the BCZT layer, significantly enhancing the film's electric breakdown strength. Furthermore, mathematical analysis reveals that the electric field redistribution amplifies dipole polarization, with BCZT-OD-initiated multilayers exhibiting superior polarization compared to those with equivalent periodicity but different starting layers. Consequently, the BCZT/BCZT-OD//(1P) multilayer achieves an exceptional recoverable energy density (<i>W</i><sub>rec</sub>) of 150.22 J cm<sup>-3</sup> and an energy efficiency (<i>η</i>) of 83.07%, surpassing typical performance benchmarks for BCZT-based thin films. These findings are corroborated by comprehensive structural characterization studies, performance evaluations, and finite element simulations, which further validate the role of the Schottky barrier in enhancing voltage endurance. Analogous to \"<i>Tian Ji's Strategy for Horse Racing</i>\", this work achieved high <i>W</i><sub>rec</sub> by sacrificing the ferroelectricity of the negative side of the <i>P</i>-<i>E</i> loop, introducing an innovative paradigm for designing and developing next-generation electronic devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01651c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multilayer thin films composed of dielectric Ba0.7Ca0.3Zr0.2Ti0.8O3 (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film. This redistribution delays the breakdown of the BCZT layer, significantly enhancing the film's electric breakdown strength. Furthermore, mathematical analysis reveals that the electric field redistribution amplifies dipole polarization, with BCZT-OD-initiated multilayers exhibiting superior polarization compared to those with equivalent periodicity but different starting layers. Consequently, the BCZT/BCZT-OD//(1P) multilayer achieves an exceptional recoverable energy density (Wrec) of 150.22 J cm-3 and an energy efficiency (η) of 83.07%, surpassing typical performance benchmarks for BCZT-based thin films. These findings are corroborated by comprehensive structural characterization studies, performance evaluations, and finite element simulations, which further validate the role of the Schottky barrier in enhancing voltage endurance. Analogous to "Tian Ji's Strategy for Horse Racing", this work achieved high Wrec by sacrificing the ferroelectricity of the negative side of the P-E loop, introducing an innovative paradigm for designing and developing next-generation electronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Programmable assemblies of photothermal anisotropic micromotors for multimodal motion. Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes. A ladder-type organic molecule with pseudocapacitive properties enabling superior electrochemical desalination. A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach. Boosting the energy storage performance of BCZT-based capacitors by constructing a Schottky contact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1