{"title":"Convergent Isobilateral Leaves Increase the Risk for Mangroves Facing Human-Induced Rapid Environmental Changes.","authors":"Yulin Weng, Dandan Qin, Xiao Li, Jiawen Zhou, Bowen Zhang, Qingshun Quinn Li","doi":"10.1111/pce.15373","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species. Here, we analyse the genetic convergence of isobilateral leaves in mangroves that have independently adapted to coastal intertidal zones. Our findings reveal that genetic convergence is evident in gene families involved in leaf abaxial and adaxial development, with strong selection pressures identified in photosynthesis and leaf polarity pathways. Despite these adaptations, mangrove species with isobilateral leaves occupy narrower ecological niches and face diminishing suitable habitat areas projected under various HIREC scenarios. These results indicate that while convergent traits enhance local adaptation, they may also increase vulnerability to ongoing environmental changes. This research provides valuable insight into the interplay between genetic adaptation and environmental resilience, underscoring the necessity for targeted biodiversity conservation strategies that safeguard specific adaptive traits amid rapid environmental shifts.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15373","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species. Here, we analyse the genetic convergence of isobilateral leaves in mangroves that have independently adapted to coastal intertidal zones. Our findings reveal that genetic convergence is evident in gene families involved in leaf abaxial and adaxial development, with strong selection pressures identified in photosynthesis and leaf polarity pathways. Despite these adaptations, mangrove species with isobilateral leaves occupy narrower ecological niches and face diminishing suitable habitat areas projected under various HIREC scenarios. These results indicate that while convergent traits enhance local adaptation, they may also increase vulnerability to ongoing environmental changes. This research provides valuable insight into the interplay between genetic adaptation and environmental resilience, underscoring the necessity for targeted biodiversity conservation strategies that safeguard specific adaptive traits amid rapid environmental shifts.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.