{"title":"Effect of mechanical instrumentation on titanium implant surface properties.","authors":"Mohammed Alabbad, Nick Silikas, Andrew Thomas","doi":"10.1016/j.dental.2024.12.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.</p><p><strong>Methods: </strong>Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group. Each disc was treated for 60 seconds with the respective rotary brush according to the manufacturer's instructions. Surface morphology was analysed using Scanning Electron Microscopy (SEM), surface elemental composition with Energy Dispersive X-ray (EDX), surface roughness via optical profilometry, and wettability with a droplet shape analyser.</p><p><strong>Results: </strong>SEI analysis revealed morphological changes, including scratches, flattening, and loose titanium particles in the IB, PIB, and NiTiB groups, whereas the LB group preserved the original surface morphology. SEM-EDX analysis showed that LB, PIB, and NiTiB groups closely match the control elemental composition. However, IB groups showed significantly different composition. Surface roughness values in the IB, PIB, and NiTiB groups differed significantly from the control (p < 0.05), whereas the LB group had comparable roughness values (p > 0.05). Contact angle measurements indicated enhanced wettability in IB, PIB, and NiTiB groups (p < 0.05), while the LB group exhibited values comparable to the control (p > 0.05).</p><p><strong>Significance: </strong>Mechanical decontamination of implant surfaces utilising rotary brushes can alter implant surface properties.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2024.12.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.
Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group. Each disc was treated for 60 seconds with the respective rotary brush according to the manufacturer's instructions. Surface morphology was analysed using Scanning Electron Microscopy (SEM), surface elemental composition with Energy Dispersive X-ray (EDX), surface roughness via optical profilometry, and wettability with a droplet shape analyser.
Results: SEI analysis revealed morphological changes, including scratches, flattening, and loose titanium particles in the IB, PIB, and NiTiB groups, whereas the LB group preserved the original surface morphology. SEM-EDX analysis showed that LB, PIB, and NiTiB groups closely match the control elemental composition. However, IB groups showed significantly different composition. Surface roughness values in the IB, PIB, and NiTiB groups differed significantly from the control (p < 0.05), whereas the LB group had comparable roughness values (p > 0.05). Contact angle measurements indicated enhanced wettability in IB, PIB, and NiTiB groups (p < 0.05), while the LB group exhibited values comparable to the control (p > 0.05).
Significance: Mechanical decontamination of implant surfaces utilising rotary brushes can alter implant surface properties.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.