Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra
{"title":"Integrating machine learning and structural dynamics to explore B-cell lymphoma-2 inhibitors for chronic lymphocytic leukemia therapy.","authors":"Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra","doi":"10.1007/s11030-024-11079-1","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11079-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;