[Effects of high salt diet on renal vascular reactivity in mice detected by laser speckle contrast imaging].

Q3 Medicine 生理学报 Pub Date : 2024-12-25
Li-Xia Hu, Shao-Peng Jiang, Ao Xiao, Xin-Xin Meng, Ming-Xiao Wang
{"title":"[Effects of high salt diet on renal vascular reactivity in mice detected by laser speckle contrast imaging].","authors":"Li-Xia Hu, Shao-Peng Jiang, Ao Xiao, Xin-Xin Meng, Ming-Xiao Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to conduct <i>in vivo</i> experiments using laser speckle contrast imaging (LSCI) technology to investigate the effects of high salt diet on renal vascular reactivity in mice. LSCI is a technology for monitoring blood flow based on the laser speckle principle. It has been widely used to detect microcirculatory functions in tissues such as the skin and brain. The kidneys are located behind the peritoneum, and their position is easily affected by the movement of abdominal organs. Measuring renal microcirculation in a living individual is difficult. The present study used a self-made kidney cup to isolate the kidney and fix its position relatively, and then applied LSCI technology to explore the effect of high salt diet (8% Na<sup>+</sup>) on renal vascular reactivity in male and female mice <i>in vivo</i>. The results showed that a short-term high salt diet (1 week) did not affect the systolic blood pressure of the tail artery, while significantly increased glomerular filtration rate (GFR) and renal blood flow (RBF). Compared with the normal salt diet group, the high salt diet group showed a significant decrease in the ratio of post-occlusive reactive hyperemia (PORH) in male mice, while there was no significant change in the PORH ratio in female mice. These results suggest that, although a short-term high salt diet does not cause changes in blood pressure, it has already affected renal vascular reactivity and has gender differences in its effects. Furthermore, the present study provides a basis for renal microcirculation assessment using LSCI <i>in vivo</i>.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"76 6","pages":"979-986"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to conduct in vivo experiments using laser speckle contrast imaging (LSCI) technology to investigate the effects of high salt diet on renal vascular reactivity in mice. LSCI is a technology for monitoring blood flow based on the laser speckle principle. It has been widely used to detect microcirculatory functions in tissues such as the skin and brain. The kidneys are located behind the peritoneum, and their position is easily affected by the movement of abdominal organs. Measuring renal microcirculation in a living individual is difficult. The present study used a self-made kidney cup to isolate the kidney and fix its position relatively, and then applied LSCI technology to explore the effect of high salt diet (8% Na+) on renal vascular reactivity in male and female mice in vivo. The results showed that a short-term high salt diet (1 week) did not affect the systolic blood pressure of the tail artery, while significantly increased glomerular filtration rate (GFR) and renal blood flow (RBF). Compared with the normal salt diet group, the high salt diet group showed a significant decrease in the ratio of post-occlusive reactive hyperemia (PORH) in male mice, while there was no significant change in the PORH ratio in female mice. These results suggest that, although a short-term high salt diet does not cause changes in blood pressure, it has already affected renal vascular reactivity and has gender differences in its effects. Furthermore, the present study provides a basis for renal microcirculation assessment using LSCI in vivo.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[激光散斑造影检测高盐饮食对小鼠肾血管反应性的影响]。
本研究采用激光散斑对比成像(LSCI)技术在体内研究高盐饮食对小鼠肾脏血管反应性的影响。LSCI是一种基于激光散斑原理的血流监测技术。它已被广泛用于检测皮肤和大脑等组织的微循环功能。肾脏位于腹膜后,其位置容易受到腹部器官运动的影响。在活人体内测量肾脏微循环是困难的。本研究采用自制肾杯对肾脏进行分离和相对定位,然后应用LSCI技术在体内探讨高盐饮食(8% Na+)对雌雄小鼠肾脏血管反应性的影响。结果显示,短期高盐饮食(1周)不影响尾动脉收缩压,但显著提高肾小球滤过率(GFR)和肾血流量(RBF)。与正常盐饮食组相比,高盐饮食组显著降低了雄性小鼠闭塞后反应性充血(PORH)比例,而雌性小鼠的PORH比例无显著变化。这些结果表明,虽然短期高盐饮食不会引起血压的变化,但它已经影响了肾脏血管的反应性,并且在其影响上存在性别差异。此外,本研究为活体LSCI评估肾脏微循环提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生理学报
生理学报 Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
期刊最新文献
[Advances in inhibitory ion channel glycine receptors]. [Association between ADCY3 gene polymorphism and the effects of high-intensity interval training on body composition]. [Cardiac β-adrenergic receptor regulation of mitochondrial function in heart failure]. [Effects of high salt diet on renal vascular reactivity in mice detected by laser speckle contrast imaging]. [Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1