Supplying LSD1 with FAD in pancreatic cancer: a matter of protein-protein interaction?

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of biochemistry and biophysics Pub Date : 2025-01-07 DOI:10.1016/j.abb.2025.110291
Alessia Nisco, Angela Sposato, Marilena Ardone, Piero Leone, Rosa Angela Cardone, Lara Console, Cesare Indiveri, Katia Zanier, Maria Barile
{"title":"Supplying LSD1 with FAD in pancreatic cancer: a matter of protein-protein interaction?","authors":"Alessia Nisco, Angela Sposato, Marilena Ardone, Piero Leone, Rosa Angela Cardone, Lara Console, Cesare Indiveri, Katia Zanier, Maria Barile","doi":"10.1016/j.abb.2025.110291","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls. Our results confirmed elevated LSD1 protein levels in PANC-1 and MiaPaCa2, but not in AsPc-1, despite mRNA overexpression across all cell lines. Similarly, FADS2 levels were significantly upregulated in PANC-1 and MiaPaCa2, but not in AsPc-1, highlighting a possible link between FADS2 expression and p53 gain-of-function mutations. These results prompted us to better investigate the functional relationship between FADS2 and LSD1 by performing in cellulo protein-protein interaction analyses. Our results indicate a direct interaction between LSD1 and FADS2, while no significant interaction was observed between LSD1 and FADS1. These findings reinforce the role of FAD synthesis and its delivery to LSD1 as critical events in cancer progression and shed light on potential implications of FADS2-LSD1 dynamics as targeted therapies in cancer.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110291"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2025.110291","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls. Our results confirmed elevated LSD1 protein levels in PANC-1 and MiaPaCa2, but not in AsPc-1, despite mRNA overexpression across all cell lines. Similarly, FADS2 levels were significantly upregulated in PANC-1 and MiaPaCa2, but not in AsPc-1, highlighting a possible link between FADS2 expression and p53 gain-of-function mutations. These results prompted us to better investigate the functional relationship between FADS2 and LSD1 by performing in cellulo protein-protein interaction analyses. Our results indicate a direct interaction between LSD1 and FADS2, while no significant interaction was observed between LSD1 and FADS1. These findings reinforce the role of FAD synthesis and its delivery to LSD1 as critical events in cancer progression and shed light on potential implications of FADS2-LSD1 dynamics as targeted therapies in cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
期刊最新文献
Assessing the role of Berberine as an inhibitor of advanced glycation end products (AGEs) formation using in vitro and molecular interaction studies. Beneficial effects of Akkermansia muciniphila on benign prostatic hyperplasia and metabolic syndrome. Supplying LSD1 with FAD in pancreatic cancer: a matter of protein-protein interaction? Modulating vascular smooth muscle cell phenotype via Wnt-Independent FRZB pathways. Exploring the structure and nucleic acid interactions of the Leishmania sp. telomerase reverse transcriptase N-terminal region.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1