Beyond Homochirality: Computer Modeling Hints of Heterochiral Proteins in Early and Extraterrestrial Life.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2025-01-01 Epub Date: 2024-12-26 DOI:10.1089/ast.2024.0072
Gianluigi Casimo, Gaia Micca Longo, Savino Longo
{"title":"Beyond Homochirality: Computer Modeling Hints of Heterochiral Proteins in Early and Extraterrestrial Life.","authors":"Gianluigi Casimo, Gaia Micca Longo, Savino Longo","doi":"10.1089/ast.2024.0072","DOIUrl":null,"url":null,"abstract":"<p><p>Agent-based simulations are set to describe the early biotic selection of oligomers made of monomers of different chirality. The simulations consider the spatial distribution of agents and resources, the balance of biomass of different chirality, and the balance of chemical energy. Following the well-known Wald's hypothesis, a disadvantage is attributed to the change in chirality along the biochemical sequence. A racemic amino acid budget is considered, based on findings in meteorites and the results of Miller's experiments. It is also hypothesized that the very first life forms were heterotrophic. Given these assumptions, our simulations showed that biological sequences were not strictly homochiral and had few chirality changes. These results suggest that the current dominance of homochiral species may have been preceded by a more structurally varied biochemistry. This might be reflected in the few known heterochiral proteins, whose structures are based neither on alpha-helices nor on beta-sheets. Extraterrestrial life forms might be based on such heterochiral proteins.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"22-31"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0072","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Agent-based simulations are set to describe the early biotic selection of oligomers made of monomers of different chirality. The simulations consider the spatial distribution of agents and resources, the balance of biomass of different chirality, and the balance of chemical energy. Following the well-known Wald's hypothesis, a disadvantage is attributed to the change in chirality along the biochemical sequence. A racemic amino acid budget is considered, based on findings in meteorites and the results of Miller's experiments. It is also hypothesized that the very first life forms were heterotrophic. Given these assumptions, our simulations showed that biological sequences were not strictly homochiral and had few chirality changes. These results suggest that the current dominance of homochiral species may have been preceded by a more structurally varied biochemistry. This might be reflected in the few known heterochiral proteins, whose structures are based neither on alpha-helices nor on beta-sheets. Extraterrestrial life forms might be based on such heterochiral proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越同手性:早期和地外生命中异手性蛋白质的计算机建模提示。
基于主体的模拟被用来描述由不同手性单体组成的低聚物的早期生物选择。模拟考虑了药剂和资源的空间分布、不同手性生物量的平衡和化学能的平衡。根据著名的沃尔德假设,不利因素是手性沿着生化序列的变化。根据陨石中的发现和米勒的实验结果,考虑了外消旋氨基酸预算。还有一种假说认为,最初的生命形式是异养的。基于这些假设,我们的模拟表明生物序列不是严格的同手性,并且手性变化很少。这些结果表明,目前的优势同手性物种可能已经有一个结构上更多样化的生物化学。这可能反映在少数已知的异手性蛋白质上,它们的结构既不是基于-螺旋也不是基于-片。外星生命形式可能基于这种异手性蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station. Beyond Homochirality: Computer Modeling Hints of Heterochiral Proteins in Early and Extraterrestrial Life. The Space Radiobiological Exposure Facility on the China Space Station. Amplicon Sequencing Reveals Diversity in Spatially Separated Microbial Communities in the Icelandic Mars Analog Environment Mælifellssandur. A One-Dimensional Energy Balance Model Parameterization for the Formation of CO2 Ice on the Surfaces of Eccentric Extrasolar Planets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1