Jie Wei, Yao Zheng, Dong Huang, Yang Liu, Xiaopan Xu, Hongbing Lu
{"title":"A Semi-Supervised Multi-Region Segmentation Framework of Bladder Wall and Tumor with Wall-Enhanced Self-Supervised Pre-Training.","authors":"Jie Wei, Yao Zheng, Dong Huang, Yang Liu, Xiaopan Xu, Hongbing Lu","doi":"10.3390/bioengineering11121225","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer is a prevalent and highly recurrent malignancy within the urinary tract. The accurate segmentation of the bladder wall and tumor in magnetic resonance imaging (MRI) is a crucial step in distinguishing between non-muscle-invasive and muscle-invasive types of bladder cancer, which plays a pivotal role in guiding clinical treatment decisions and influencing postoperative quality of life. The performance of data-driven methods is highly dependent on the quality of the annotations and datasets, however the amount of high-quality annotated data is very limited given the difficulty of professional radiologists to distinguish the mixed regions between the bladder wall and the tumor. The performance of the data-driven approach is highly dependent on the quality of the annotation and datasets, Therefore, in order to alleviate these problems and take full advantage of the potential of limited annotated and unlabeled data, we designed a semi-supervised multi-region framework for bladder wall and tumor segmentation. Our framework incorporates wall-enhanced self-supervised pre-training, designed to enhance discrimination of the bladder wall, and a semi-supervised segmentation network that utilizes both limited high-quality annotated data and unlabeled data. Contrast consistency and reconstruction observation losses are introduced to constrain the model to enhance the bladder walls, and adaptive learning rate and post-processing techniques are implemented to further improve segmentation performance. Extensive experimental validation demonstrated that our proposed method achieves promising results in the segmentation of both the bladder wall and the tumor. The average Dice Similarity Coefficients (DSCs) of the proposed method for the bladder wall and tumor were 0.8351 and 0.9175, respectively. Visualization results indicated that our method can effectively reduce excessive segmentation artifacts outside the bladder, and improve the clinical significance of the segmentation results.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bladder cancer is a prevalent and highly recurrent malignancy within the urinary tract. The accurate segmentation of the bladder wall and tumor in magnetic resonance imaging (MRI) is a crucial step in distinguishing between non-muscle-invasive and muscle-invasive types of bladder cancer, which plays a pivotal role in guiding clinical treatment decisions and influencing postoperative quality of life. The performance of data-driven methods is highly dependent on the quality of the annotations and datasets, however the amount of high-quality annotated data is very limited given the difficulty of professional radiologists to distinguish the mixed regions between the bladder wall and the tumor. The performance of the data-driven approach is highly dependent on the quality of the annotation and datasets, Therefore, in order to alleviate these problems and take full advantage of the potential of limited annotated and unlabeled data, we designed a semi-supervised multi-region framework for bladder wall and tumor segmentation. Our framework incorporates wall-enhanced self-supervised pre-training, designed to enhance discrimination of the bladder wall, and a semi-supervised segmentation network that utilizes both limited high-quality annotated data and unlabeled data. Contrast consistency and reconstruction observation losses are introduced to constrain the model to enhance the bladder walls, and adaptive learning rate and post-processing techniques are implemented to further improve segmentation performance. Extensive experimental validation demonstrated that our proposed method achieves promising results in the segmentation of both the bladder wall and the tumor. The average Dice Similarity Coefficients (DSCs) of the proposed method for the bladder wall and tumor were 0.8351 and 0.9175, respectively. Visualization results indicated that our method can effectively reduce excessive segmentation artifacts outside the bladder, and improve the clinical significance of the segmentation results.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering