Woosik Jeong, Chang-Heon Baek, Dong-Yeong Lee, Sang-Youn Song, Jae-Boem Na, Mohamad Soleh Hidayat, Geonwoo Kim, Dong-Hee Kim
{"title":"The Classification of Metastatic Spine Cancer and Spinal Compression Fractures by Using CNN and SVM Techniques.","authors":"Woosik Jeong, Chang-Heon Baek, Dong-Yeong Lee, Sang-Youn Song, Jae-Boem Na, Mohamad Soleh Hidayat, Geonwoo Kim, Dong-Hee Kim","doi":"10.3390/bioengineering11121264","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic spine cancer can cause pain and neurological issues, making it challenging to distinguish from spinal compression fractures using magnetic resonance imaging (MRI). To improve diagnostic accuracy, this study developed artificial intelligence (AI) models to differentiate between metastatic spine cancer and spinal compression fractures in MRI images. MRI data from Gyeongsang National University Hospital, collected from January 2019 to April 2022, were processed using Otsu's binarization and Canny edge detection algorithms. Using these preprocessed datasets, convolutional neural network (CNN) and support vector machine (SVM) models were built. The T1-weighted image-based CNN model demonstrated high sensitivity (1.00) and accuracy (0.98) in identifying metastatic spine cancer, particularly with data processed by Otsu's binarization and Canny edge detection, achieving exceptional performance in detecting cancerous cases. This approach highlights the potential of preprocessed MRI data for AI-assisted diagnosis, supporting clinical applications in distinguishing metastatic spine cancer from spinal compression fractures.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metastatic spine cancer can cause pain and neurological issues, making it challenging to distinguish from spinal compression fractures using magnetic resonance imaging (MRI). To improve diagnostic accuracy, this study developed artificial intelligence (AI) models to differentiate between metastatic spine cancer and spinal compression fractures in MRI images. MRI data from Gyeongsang National University Hospital, collected from January 2019 to April 2022, were processed using Otsu's binarization and Canny edge detection algorithms. Using these preprocessed datasets, convolutional neural network (CNN) and support vector machine (SVM) models were built. The T1-weighted image-based CNN model demonstrated high sensitivity (1.00) and accuracy (0.98) in identifying metastatic spine cancer, particularly with data processed by Otsu's binarization and Canny edge detection, achieving exceptional performance in detecting cancerous cases. This approach highlights the potential of preprocessed MRI data for AI-assisted diagnosis, supporting clinical applications in distinguishing metastatic spine cancer from spinal compression fractures.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering