Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-17 DOI:10.3390/bioengineering11121281
Tsabeeh Salah M Mahmoud, Adnan Munawar, Muhammad Zeeshan Nawaz, Yuanyuan Chen
{"title":"Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration.","authors":"Tsabeeh Salah M Mahmoud, Adnan Munawar, Muhammad Zeeshan Nawaz, Yuanyuan Chen","doi":"10.3390/bioengineering11121281","DOIUrl":null,"url":null,"abstract":"<p><p>Multispectral transmission imaging has emerged as a promising technique for imaging breast tissue with high resolution. However, the method encounters challenges such as low grayscale, noisy transmission images with weak signals, primarily due to the strong absorption and scattering of light in breast tissue. A common approach to improve the signal-to-noise ratio (SNR) and overall image quality is frame accumulation. However, factors such as camera jitter and respiratory motion during image acquisition can cause frame misalignment, degrading the quality of the accumulated image. To address these issues, this study proposes a novel image registration method. A hybrid approach combining a genetic algorithm (GA) and a constriction factor-based particle swarm optimization (CPSO), referred to as GA-CPSO, is applied for image registration before frame accumulation. The efficiency of this hybrid method is enhanced by incorporating a squared constriction factor (SCF), which speeds up the registration process and improves convergence towards optimal solutions. The GA identifies potential solutions, which are then refined by CPSO to expedite convergence. This methodology was validated on the sequence of breast frames taken at 600 nm, 620 nm, 670 nm, and 760 nm wavelength of light and proved the enhancement of accuracy by various mathematical assessments. It demonstrated high accuracy (99.93%) and reduced registration time. As a result, the GA-CPSO approach significantly improves the effectiveness of frame accumulation and enhances overall image quality. This study explored the groundwork for precise multispectral transmission image segmentation and classification.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121281","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multispectral transmission imaging has emerged as a promising technique for imaging breast tissue with high resolution. However, the method encounters challenges such as low grayscale, noisy transmission images with weak signals, primarily due to the strong absorption and scattering of light in breast tissue. A common approach to improve the signal-to-noise ratio (SNR) and overall image quality is frame accumulation. However, factors such as camera jitter and respiratory motion during image acquisition can cause frame misalignment, degrading the quality of the accumulated image. To address these issues, this study proposes a novel image registration method. A hybrid approach combining a genetic algorithm (GA) and a constriction factor-based particle swarm optimization (CPSO), referred to as GA-CPSO, is applied for image registration before frame accumulation. The efficiency of this hybrid method is enhanced by incorporating a squared constriction factor (SCF), which speeds up the registration process and improves convergence towards optimal solutions. The GA identifies potential solutions, which are then refined by CPSO to expedite convergence. This methodology was validated on the sequence of breast frames taken at 600 nm, 620 nm, 670 nm, and 760 nm wavelength of light and proved the enhancement of accuracy by various mathematical assessments. It demonstrated high accuracy (99.93%) and reduced registration time. As a result, the GA-CPSO approach significantly improves the effectiveness of frame accumulation and enhances overall image quality. This study explored the groundwork for precise multispectral transmission image segmentation and classification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过帧积累和GA-CPSO混合配准提高乳腺多光谱成像质量。
多光谱透射成像已成为一种有前途的高分辨率乳腺组织成像技术。然而,由于乳房组织对光的强吸收和散射,该方法遇到了低灰度,信号弱的噪声传输图像等挑战。提高信噪比(SNR)和整体图像质量的常用方法是帧积累。然而,在图像采集过程中,相机抖动和呼吸运动等因素会导致帧不对齐,从而降低累积图像的质量。为了解决这些问题,本研究提出了一种新的图像配准方法。将遗传算法(GA)和基于收缩因子的粒子群优化(CPSO)相结合的混合方法(GA -CPSO)应用于帧积累前的图像配准。该混合方法通过加入平方收缩因子(SCF)来提高效率,从而加快了配准过程并改善了向最优解的收敛性。遗传算法识别潜在的解决方案,然后由CPSO改进以加快收敛。该方法在600 nm、620 nm、670 nm和760 nm波长下拍摄的乳房框架序列上进行了验证,并通过各种数学评估证明了准确性的提高。该方法具有较高的准确率(99.93%)和较短的配准时间。结果表明,GA-CPSO方法显著提高了帧积累的有效性,提高了整体图像质量。本研究为多光谱透射图像的精确分割与分类奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1