Marina Danalache, Lena Karin Gaa, Charline Burgun, Felix Umrath, Andreas Naros, Dorothea Alexander
{"title":"Mesenchymal Stem Cell Plasticity: What Role Do Culture Conditions and Substrates Play in Shaping Biomechanical Signatures?","authors":"Marina Danalache, Lena Karin Gaa, Charline Burgun, Felix Umrath, Andreas Naros, Dorothea Alexander","doi":"10.3390/bioengineering11121282","DOIUrl":null,"url":null,"abstract":"<p><p>Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates. Using atomic force microscopy, we measured cellular elasticity and Young's modulus of calcium phosphate precipitates (CaPPs) formed under osteogenic conditions. Correlation analyses between cellular stiffness, quantity of CaPP deposition, and stiffness of formed CaPPs were evaluated. The results showed that iMSCs, despite their softer cellular consistency, tended to form CaPPs of higher elastic moduli than osteogenically differentiated JPCs. Particularly under normoxic conditions, JPCs formed stronger CaPPs with lower cellular stiffness profiles. Conversely, iMSCs cultivated under hypoxic conditions on laminin-coated surfaces produced stronger CaPPs while maintaining lower cellular stiffness. We conclude that JPCs and iMSCs display distinct biomechanical responses to culture conditions. While JPCs increase cellular stiffness during osteogenic differentiation, in particular under hypoxic conditions, iMSCs exhibit a decrease in stiffness, indicating a higher resistance to lower oxygen levels. In both cell types, a lower cellular stiffness profile correlates with enhanced mineralization, indicating that this biomechanical fingerprint serves as a critical marker for osteogenic differentiation.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates. Using atomic force microscopy, we measured cellular elasticity and Young's modulus of calcium phosphate precipitates (CaPPs) formed under osteogenic conditions. Correlation analyses between cellular stiffness, quantity of CaPP deposition, and stiffness of formed CaPPs were evaluated. The results showed that iMSCs, despite their softer cellular consistency, tended to form CaPPs of higher elastic moduli than osteogenically differentiated JPCs. Particularly under normoxic conditions, JPCs formed stronger CaPPs with lower cellular stiffness profiles. Conversely, iMSCs cultivated under hypoxic conditions on laminin-coated surfaces produced stronger CaPPs while maintaining lower cellular stiffness. We conclude that JPCs and iMSCs display distinct biomechanical responses to culture conditions. While JPCs increase cellular stiffness during osteogenic differentiation, in particular under hypoxic conditions, iMSCs exhibit a decrease in stiffness, indicating a higher resistance to lower oxygen levels. In both cell types, a lower cellular stiffness profile correlates with enhanced mineralization, indicating that this biomechanical fingerprint serves as a critical marker for osteogenic differentiation.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering