Yoosun Kim, Sejun Park, Seungtae Yang, Alireza Nasirzadeh, Giuk Lee
{"title":"The Interplay Between Muscular Activity and Pattern Recognition of Electro-Stimulated Haptic Cues During Normal Walking: A Pilot Study.","authors":"Yoosun Kim, Sejun Park, Seungtae Yang, Alireza Nasirzadeh, Giuk Lee","doi":"10.3390/bioengineering11121248","DOIUrl":null,"url":null,"abstract":"<p><p>This pilot study explored how muscle activation influences the pattern recognition of tactile cues delivered using electrical stimulation (ES) during each 10% window interval of the normal walking gait cycle (GC). Three healthy adults participated in the experiment. After identifying the appropriate threshold, ES as the haptic cue was applied to the gastrocnemius lateralis (GL) and biceps brachii (BB) of participants walking on a treadmill. Findings revealed variable recognition patterns across participants, with the BB showing more variability during walking due to its minimal activity compared to the actively engaged GL. Dynamic time warping (DTW) was used to assess the similarity between muscle activation and electro-stimulated haptic perception. The DTW distance between electromyography (EMG) signals and muscle recognition patterns was significantly smaller for the GL (4.87 ± 0.21, mean ± SD) than the BB (8.65 ± 1.36, mean ± SD), showing a 78.6% relative difference, indicating that higher muscle activation was generally associated with more consistent haptic perception. However, individual differences and variations in recognition patterns were observed, suggesting personal variability influenced the perception outcomes. The study underscores the complexity of human neuromuscular responses to artificial sensory stimuli and suggests a potential link between muscle activity and haptic perception.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121248","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This pilot study explored how muscle activation influences the pattern recognition of tactile cues delivered using electrical stimulation (ES) during each 10% window interval of the normal walking gait cycle (GC). Three healthy adults participated in the experiment. After identifying the appropriate threshold, ES as the haptic cue was applied to the gastrocnemius lateralis (GL) and biceps brachii (BB) of participants walking on a treadmill. Findings revealed variable recognition patterns across participants, with the BB showing more variability during walking due to its minimal activity compared to the actively engaged GL. Dynamic time warping (DTW) was used to assess the similarity between muscle activation and electro-stimulated haptic perception. The DTW distance between electromyography (EMG) signals and muscle recognition patterns was significantly smaller for the GL (4.87 ± 0.21, mean ± SD) than the BB (8.65 ± 1.36, mean ± SD), showing a 78.6% relative difference, indicating that higher muscle activation was generally associated with more consistent haptic perception. However, individual differences and variations in recognition patterns were observed, suggesting personal variability influenced the perception outcomes. The study underscores the complexity of human neuromuscular responses to artificial sensory stimuli and suggests a potential link between muscle activity and haptic perception.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering