Brendon C Besler, Ryan Baker, Hua Shen, Elise C Fear
{"title":"Effect of Physiologically Relevant Dehydration on the Dielectric Properties of Ground Beef.","authors":"Brendon C Besler, Ryan Baker, Hua Shen, Elise C Fear","doi":"10.1002/bem.22534","DOIUrl":null,"url":null,"abstract":"<p><p>Readily available animal tissue, such as ground beef, is a convenient material to represent the dielectric properties of biological tissue when validating microwave imaging and sensing hardware and techniques. The reliable use of these materials depends on the accurate characterization of their properties. In this work, the effect of physiologically relevant levels of dehydration on ex vivo tissue samples is quantified while controlling for variation within and between samples. Seven commercial ground beef samples (90% lean muscle, 10% fat) are dehydrated from 0.0% to 7.0% in 1.0% increments by weight. Dielectric measurements are collected using a conventional dielectric probe technique from 0.2 to 6 GHz. A linear mixed-effects model is used to control for within- and between-sample variation while modeling the effect of dehydration and dispersion across frequency. Significant ( <math> <semantics> <mrow><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </mrow> <annotation>$p\\lt 0.05$</annotation></semantics> </math> ) changes are noted in both permittivity and conductivity due to sample dehydration. For a 1% change in weight due to dehydration, changes in permittivity (5.1%-5.6%) and conductivity (3.2%-5.7%) are reported. These changes are important for the use of large muscle-based phantoms in microwave sensing and imaging validation, as well as the feasibility of microwave hydration assessment. The statistical model used here can be applied to similar research questions and can augment existing frameworks for reporting dielectric measurements.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22534"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bem.22534","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Readily available animal tissue, such as ground beef, is a convenient material to represent the dielectric properties of biological tissue when validating microwave imaging and sensing hardware and techniques. The reliable use of these materials depends on the accurate characterization of their properties. In this work, the effect of physiologically relevant levels of dehydration on ex vivo tissue samples is quantified while controlling for variation within and between samples. Seven commercial ground beef samples (90% lean muscle, 10% fat) are dehydrated from 0.0% to 7.0% in 1.0% increments by weight. Dielectric measurements are collected using a conventional dielectric probe technique from 0.2 to 6 GHz. A linear mixed-effects model is used to control for within- and between-sample variation while modeling the effect of dehydration and dispersion across frequency. Significant ( ) changes are noted in both permittivity and conductivity due to sample dehydration. For a 1% change in weight due to dehydration, changes in permittivity (5.1%-5.6%) and conductivity (3.2%-5.7%) are reported. These changes are important for the use of large muscle-based phantoms in microwave sensing and imaging validation, as well as the feasibility of microwave hydration assessment. The statistical model used here can be applied to similar research questions and can augment existing frameworks for reporting dielectric measurements.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.