Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-01-09 DOI:10.1186/s12880-024-01483-2
Chen Chen, Lifang Hao, Bin Bai, Guijun Zhang
{"title":"Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas.","authors":"Chen Chen, Lifang Hao, Bin Bai, Guijun Zhang","doi":"10.1186/s12880-024-01483-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).</p><p><strong>Methods: </strong>279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%). Combinations of data preprocessing methods, including normalization (Min-Max, Z-score, Mean), dimensionality reduction (Pearson Correlation Coefficients (PCC)), feature selector (max-Number, cluster) and ten-fold cross-validation were analyzed for their prediction performance. Kaplan-Meier curve, Cox proportional hazards regression model were used and concordance index (C-index), integrated Brier score (IBS) were selected. Model performance was assessed using the C-index.</p><p><strong>Results: </strong>WHO grade, age, gender, histogram (Mean, Perc.90%, Perc.99%), Gray-level co-occurrence matrix (S(3, -3)DifVarnc, S(5, 5)Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom), Teta1, WavEnLL_s-2 and GrVariance were identified as the significant recurrence factors. The pipeline using Mean_PCC_Cluster_10 of T1C yielded the highest efficiency with an IBS of 0.170, 0.188, 0.208 and C-index of 0.709, 0.705, 0.602 in the train, test and validation sets, respectively. The pipeline using MinMax_PCC_Cluster_19 of T2WI yielded the highest efficiency with an IBS of 0.189, 0.175, 0.185 and C-index of 0.783, 0.66, 0.649 in the train, test and validation sets. The pipeline using MinMax_PCC_Cluster_13 of T2WI + T1C yielded the highest efficiency with an IBS of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 in the train, test and validation sets, respectively.</p><p><strong>Conclusion: </strong>Knowledge discovery from MRI radiomic features can slightly help predict recurrence risk in HGMs. T2WI or T1C yielded better efficiency than T2WI + T1C. The parameters with the best power were Mean, Perc.99%, WavEnLL_s-2, Teta1 and GrVariance.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"14"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01483-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).

Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%). Combinations of data preprocessing methods, including normalization (Min-Max, Z-score, Mean), dimensionality reduction (Pearson Correlation Coefficients (PCC)), feature selector (max-Number, cluster) and ten-fold cross-validation were analyzed for their prediction performance. Kaplan-Meier curve, Cox proportional hazards regression model were used and concordance index (C-index), integrated Brier score (IBS) were selected. Model performance was assessed using the C-index.

Results: WHO grade, age, gender, histogram (Mean, Perc.90%, Perc.99%), Gray-level co-occurrence matrix (S(3, -3)DifVarnc, S(5, 5)Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom), Teta1, WavEnLL_s-2 and GrVariance were identified as the significant recurrence factors. The pipeline using Mean_PCC_Cluster_10 of T1C yielded the highest efficiency with an IBS of 0.170, 0.188, 0.208 and C-index of 0.709, 0.705, 0.602 in the train, test and validation sets, respectively. The pipeline using MinMax_PCC_Cluster_19 of T2WI yielded the highest efficiency with an IBS of 0.189, 0.175, 0.185 and C-index of 0.783, 0.66, 0.649 in the train, test and validation sets. The pipeline using MinMax_PCC_Cluster_13 of T2WI + T1C yielded the highest efficiency with an IBS of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 in the train, test and validation sets, respectively.

Conclusion: Knowledge discovery from MRI radiomic features can slightly help predict recurrence risk in HGMs. T2WI or T1C yielded better efficiency than T2WI + T1C. The parameters with the best power were Mean, Perc.99%, WavEnLL_s-2, Teta1 and GrVariance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer. Investigating resting-state functional connectivity changes within procedural memory network across neuropsychiatric disorders using fMRI. Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction. Comparison of diagnostic performance for pulmonary nodule detection between free-breathing spiral ultrashort echo time and free-breathing radial volumetric interpolated breath-hold examination. Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1