Endogenous CD4 T cells that recognize ALK and the NPM1::ALK fusion protein can be expanded from human peripheral blood.

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2025-01-07 DOI:10.1158/2326-6066.CIR-24-0445
Serena Stadler, Rafael B Blasco, Vijay Kumar Singh, Christine Damm-Welk, Amin Ben-Hamza, Carlotta Welters, Leo Hansmann, Roberto Chiarle, Wilhelm Wossmann
{"title":"Endogenous CD4 T cells that recognize ALK and the NPM1::ALK fusion protein can be expanded from human peripheral blood.","authors":"Serena Stadler, Rafael B Blasco, Vijay Kumar Singh, Christine Damm-Welk, Amin Ben-Hamza, Carlotta Welters, Leo Hansmann, Roberto Chiarle, Wilhelm Wossmann","doi":"10.1158/2326-6066.CIR-24-0445","DOIUrl":null,"url":null,"abstract":"<p><p>Anaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK. ALK-specific CD4+ T cells were detected in 15 individuals after stimulation with autologous dendritic cells pulsed with long-overlapping ALK peptide pools. CD4+ T-cell epitopes were predominantly located within three specific regions (p102-188, p257-356, p593-680) in the ALK portion of the fusion protein. We detected CD4+ T cells in one patient that recognized the NPM1::ALK fusion neoepitope and identified a corresponding T-cell receptor (TCR) by TCR single-cell sequencing. The NPM1::ALK fusion-specific TCR was HLA-DR13 restricted and conferred antigen specificity when expressed in a TCR- reporter cell line (58--). Together, our data provide evidence of ALK-specific CD4+ T cells in human peripheral blood, describe target epitopes in patients and support the consideration of CD4+ T cells in the development of ALK-specific immunotherapies.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0445","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK. ALK-specific CD4+ T cells were detected in 15 individuals after stimulation with autologous dendritic cells pulsed with long-overlapping ALK peptide pools. CD4+ T-cell epitopes were predominantly located within three specific regions (p102-188, p257-356, p593-680) in the ALK portion of the fusion protein. We detected CD4+ T cells in one patient that recognized the NPM1::ALK fusion neoepitope and identified a corresponding T-cell receptor (TCR) by TCR single-cell sequencing. The NPM1::ALK fusion-specific TCR was HLA-DR13 restricted and conferred antigen specificity when expressed in a TCR- reporter cell line (58--). Together, our data provide evidence of ALK-specific CD4+ T cells in human peripheral blood, describe target epitopes in patients and support the consideration of CD4+ T cells in the development of ALK-specific immunotherapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别ALK和NPM1::ALK融合蛋白的内源性CD4 T细胞可以从人外周血中扩增。
染色体重排引起的间变性淋巴瘤激酶(ALK)融合蛋白是癌症免疫治疗的有希望的靶点。虽然已经在alk阳性恶性肿瘤患者中发现了alk特异性CD8+ T细胞和MHC I类表位,但对alk特异性CD4+ T细胞知之甚少。我们筛选了10例ALK阳性间变性大细胞淋巴瘤(ALK+ALCL)缓解期患者和6例健康供者的外周血,检测CD4+ t细胞对全ALK融合蛋白核磷蛋白(NPM1)::ALK的反应。用长重叠ALK肽池脉冲的自体树突状细胞刺激15例个体,检测到ALK特异性CD4+ T细胞。CD4+ t细胞表位主要位于融合蛋白ALK部分的三个特定区域(p102-188, p257-356, p593-680)。我们检测了一名患者的CD4+ T细胞识别NPM1::ALK融合新表位,并通过TCR单细胞测序鉴定了相应的T细胞受体(TCR)。当在TCR报告细胞系中表达时,NPM1::ALK融合特异性TCR受到HLA-DR13限制并赋予抗原特异性(58--)。总之,我们的数据提供了人类外周血中alk特异性CD4+ T细胞的证据,描述了患者的靶表位,并支持在开发alk特异性免疫疗法时考虑CD4+ T细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
A bifunctional antibody targeting PD-1 and TGF-β signaling has antitumor activity in combination with radiotherapy and attenuates radiation-induced lung injury. Different PD-L1 Assays Reveal Distinct Immunobiology and Clinical Outcomes in Urothelial Cancer. PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function. PKCδ germline variants and genetic deletion in mice augment antitumor immunity through regulation of myeloid cells. In situ detection of individual classical MHC-I gene products in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1