Emily Schwarz, Himanshu Savardekar, Sara Zelinskas, Abigail Mouse, Gabriella Lapurga, Justin Lyberger, Adithe Rivaldi, Emily M Ringwalt, Katherine E Miller, Lianbo Yu, Gregory K Behbehani, Timothy P Cripe, William E Carson
{"title":"Trabectedin enhances the antitumor effects of IL-12 in triple-negative breast cancer.","authors":"Emily Schwarz, Himanshu Savardekar, Sara Zelinskas, Abigail Mouse, Gabriella Lapurga, Justin Lyberger, Adithe Rivaldi, Emily M Ringwalt, Katherine E Miller, Lianbo Yu, Gregory K Behbehani, Timothy P Cripe, William E Carson","doi":"10.1158/2326-6066.CIR-24-0775","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-12 (IL-12) is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL 12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T BET (Tbx21), the cytotoxic ligands TRAIL (TNFSF10) and Fas ligand (FASLG) and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1). The combination of IL-12 and trabectedin increased NK-cell cytotoxicity, activation and production of IFN-γ, TNF-α and granzyme B in the presence of human TNBC cells. Treatment of 4T1 and EMT6 tumor-bearing mice with IL-12 and trabectedin led to a significant reduction in tumor burden compared to single-agent controls, and the highest levels of plasma IFN-γ, intratumoral CD8+ T cells and conventional type 1 DC. MDSC and M2-like macrophages were significantly decreased with combination therapy. NK-cell depletion abrogated the effects of combination therapy, as did elimination of CD8+ T cells. NK-cell depletion led to lower levels of the NK cell-derived chemokine CCL5 and the DC-derived chemokine CXCL10, higher tumor burden, and decreased intratumoral CD8+ T cells. IL 12 and trabectedin also significantly enhanced the response of TNBC to anti-PD-L1 therapy. These data suggest that MDSC depletion augments the ability of IL-12-activated NK cells to drive the infiltration of DC and CD8+ T cells into TNBC for an antitumor effect.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0775","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-12 (IL-12) is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL 12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T BET (Tbx21), the cytotoxic ligands TRAIL (TNFSF10) and Fas ligand (FASLG) and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1). The combination of IL-12 and trabectedin increased NK-cell cytotoxicity, activation and production of IFN-γ, TNF-α and granzyme B in the presence of human TNBC cells. Treatment of 4T1 and EMT6 tumor-bearing mice with IL-12 and trabectedin led to a significant reduction in tumor burden compared to single-agent controls, and the highest levels of plasma IFN-γ, intratumoral CD8+ T cells and conventional type 1 DC. MDSC and M2-like macrophages were significantly decreased with combination therapy. NK-cell depletion abrogated the effects of combination therapy, as did elimination of CD8+ T cells. NK-cell depletion led to lower levels of the NK cell-derived chemokine CCL5 and the DC-derived chemokine CXCL10, higher tumor burden, and decreased intratumoral CD8+ T cells. IL 12 and trabectedin also significantly enhanced the response of TNBC to anti-PD-L1 therapy. These data suggest that MDSC depletion augments the ability of IL-12-activated NK cells to drive the infiltration of DC and CD8+ T cells into TNBC for an antitumor effect.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.