Parallel Bayesian Optimization of Thermophysical Properties of Low Thermal Conductivity Materials Using the Transient Plane Source Method in the Body-Fitted Coordinate.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-20 DOI:10.3390/e26121117
Huijuan Su, Jianye Kang, Yan Li, Mingxin Lyu, Yanhua Lai, Zhen Dong
{"title":"Parallel Bayesian Optimization of Thermophysical Properties of Low Thermal Conductivity Materials Using the Transient Plane Source Method in the Body-Fitted Coordinate.","authors":"Huijuan Su, Jianye Kang, Yan Li, Mingxin Lyu, Yanhua Lai, Zhen Dong","doi":"10.3390/e26121117","DOIUrl":null,"url":null,"abstract":"<p><p>The transient plane source (TPS) method heat transfer model was established. A body-fitted coordinate system is proposed to transform the unstructured grid structure to improve the speed of solving the heat transfer direct problem of the winding probe. A parallel Bayesian optimization algorithm based on a multi-objective hybrid strategy (MHS) is proposed based on an inverse problem. The efficiency of the thermophysical properties inversion was improved. The results show that the meshing method of 30° is the best. The transformation of body-fitted mesh is related to the orthogonality and density of the mesh. Compared with parameter inversion the computational fluid dynamics (CFD) software, the absolute values of the relative deviations of different materials are less than 0.03%. The calculation speeds of the body-fitted grid program are more than 36% and 91% higher than those of the CFD and self-developed unstructured mesh programs, respectively. The application of body-fitted coordinate system effectively improves the calculation speed of the TPS method. The MHS is more competitive than other algorithms in parallel mode, both in terms of accuracy and speed. The accuracy of the inversion is less affected by the number of initial samples, time range, and parallel points. The number of parallel points increased from 2 to 6, reducing the computation time by 66.6%. Adding parallel points effectively accelerates the convergence of algorithms.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121117","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transient plane source (TPS) method heat transfer model was established. A body-fitted coordinate system is proposed to transform the unstructured grid structure to improve the speed of solving the heat transfer direct problem of the winding probe. A parallel Bayesian optimization algorithm based on a multi-objective hybrid strategy (MHS) is proposed based on an inverse problem. The efficiency of the thermophysical properties inversion was improved. The results show that the meshing method of 30° is the best. The transformation of body-fitted mesh is related to the orthogonality and density of the mesh. Compared with parameter inversion the computational fluid dynamics (CFD) software, the absolute values of the relative deviations of different materials are less than 0.03%. The calculation speeds of the body-fitted grid program are more than 36% and 91% higher than those of the CFD and self-developed unstructured mesh programs, respectively. The application of body-fitted coordinate system effectively improves the calculation speed of the TPS method. The MHS is more competitive than other algorithms in parallel mode, both in terms of accuracy and speed. The accuracy of the inversion is less affected by the number of initial samples, time range, and parallel points. The number of parallel points increased from 2 to 6, reducing the computation time by 66.6%. Adding parallel points effectively accelerates the convergence of algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Applications of Entropy in Data Analysis and Machine Learning: A Review. Transpiling Quantum Assembly Language Circuits to a Qudit Form. Fundamental Limits of an Irreversible Heat Engine. Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1