{"title":"Predictive Complexity of Quantum Subsystems.","authors":"Curtis T Asplund, Elisa Panciu","doi":"10.3390/e26121065","DOIUrl":null,"url":null,"abstract":"<p><p>We define predictive states and predictive complexity for quantum systems composed of distinct subsystems. This complexity is a generalization of entanglement entropy. It is inspired by the statistical or forecasting complexity of predictive state analysis of stochastic and complex systems theory but is intrinsically quantum. Predictive states of a subsystem are formed by equivalence classes of state vectors in the exterior Hilbert space that effectively predict the same future behavior of that subsystem for some time. As an illustrative example, we present calculations in the dynamics of an isotropic Heisenberg model spin chain and show that, in comparison to the entanglement entropy, the predictive complexity better signifies dynamically important events, such as magnon collisions. It can also serve as a local order parameter that can distinguish long and short range entanglement.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121065","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We define predictive states and predictive complexity for quantum systems composed of distinct subsystems. This complexity is a generalization of entanglement entropy. It is inspired by the statistical or forecasting complexity of predictive state analysis of stochastic and complex systems theory but is intrinsically quantum. Predictive states of a subsystem are formed by equivalence classes of state vectors in the exterior Hilbert space that effectively predict the same future behavior of that subsystem for some time. As an illustrative example, we present calculations in the dynamics of an isotropic Heisenberg model spin chain and show that, in comparison to the entanglement entropy, the predictive complexity better signifies dynamically important events, such as magnon collisions. It can also serve as a local order parameter that can distinguish long and short range entanglement.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.