A Multi-Source Circular Geodesic Voting Model for Image Segmentation.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-22 DOI:10.3390/e26121123
Shuwang Zhou, Minglei Shu, Chong Di
{"title":"A Multi-Source Circular Geodesic Voting Model for Image Segmentation.","authors":"Shuwang Zhou, Minglei Shu, Chong Di","doi":"10.3390/e26121123","DOIUrl":null,"url":null,"abstract":"<p><p>Image segmentation is a crucial task in artificial intelligence fields such as computer vision and medical imaging. While convolutional neural networks (CNNs) have achieved notable success by learning representative features from large datasets, they often lack geometric priors and global object information, limiting their accuracy in complex scenarios. Variational methods like active contours provide geometric priors and theoretical interpretability but require manual initialization and are sensitive to hyper-parameters. To overcome these challenges, we propose a novel segmentation approach, named PolarVoting, which combines the minimal path encoding rich geometric features and CNNs which can provide efficient initialization. The introduced model involves two main steps: firstly, we leverage the PolarMask model to extract multiple source points for initialization, and secondly, we construct a voting score map which implicitly contains the segmentation mask via a modified circular geometric voting (CGV) scheme. This map embeds global geometric information for finding accurate segmentation. By integrating neural network representation with geometric priors, the PolarVoting model enhances segmentation accuracy and robustness. Extensive experiments on various datasets demonstrate that the proposed PolarVoting method outperforms both PolarMask and traditional single-source CGV models. It excels in challenging imaging scenarios characterized by intensity inhomogeneity, noise, and complex backgrounds, accurately delineating object boundaries and advancing the state of image segmentation.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121123","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Image segmentation is a crucial task in artificial intelligence fields such as computer vision and medical imaging. While convolutional neural networks (CNNs) have achieved notable success by learning representative features from large datasets, they often lack geometric priors and global object information, limiting their accuracy in complex scenarios. Variational methods like active contours provide geometric priors and theoretical interpretability but require manual initialization and are sensitive to hyper-parameters. To overcome these challenges, we propose a novel segmentation approach, named PolarVoting, which combines the minimal path encoding rich geometric features and CNNs which can provide efficient initialization. The introduced model involves two main steps: firstly, we leverage the PolarMask model to extract multiple source points for initialization, and secondly, we construct a voting score map which implicitly contains the segmentation mask via a modified circular geometric voting (CGV) scheme. This map embeds global geometric information for finding accurate segmentation. By integrating neural network representation with geometric priors, the PolarVoting model enhances segmentation accuracy and robustness. Extensive experiments on various datasets demonstrate that the proposed PolarVoting method outperforms both PolarMask and traditional single-source CGV models. It excels in challenging imaging scenarios characterized by intensity inhomogeneity, noise, and complex backgrounds, accurately delineating object boundaries and advancing the state of image segmentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Applications of Entropy in Data Analysis and Machine Learning: A Review. Transpiling Quantum Assembly Language Circuits to a Qudit Form. Fundamental Limits of an Irreversible Heat Engine. Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1