{"title":"Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea.","authors":"Bojan Vondra","doi":"10.3390/e26121069","DOIUrl":null,"url":null,"abstract":"<p><p>A method for evaluating Kullback-Leibler (KL) divergence and Squared Hellinger (SH) distance between empirical data and a model distribution is proposed. This method exclusively utilises the empirical Cumulative Distribution Function (CDF) of the data and the CDF of the model, avoiding data processing such as histogram binning. The proposed method converges almost surely, with the proof based on the use of exponentially distributed waiting times. An example demonstrates convergence of the KL divergence and SH distance to their true values when utilising the Generalised Pareto (GP) distribution as empirical data and the K distribution as the model. Another example illustrates the goodness of fit of these (GP and K-distribution) models to real sea clutter data from the widely used Intelligent PIxel processing X-band (IPIX) measurements. The proposed method can be applied to assess the goodness of fit of various models (not limited to GP or K distribution) to clutter measurement data such as those from the Adriatic Sea. Distinctive features of this small and immature sea, like the presence of over 1300 islands that affect local wind and wave patterns, are likely to result in an amplitude distribution of sea clutter returns that differs from predictions of models designed for oceans or open seas. However, to the author's knowledge, no data on this specific topic are currently available in the open literature, and such measurements have yet to be conducted.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121069","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A method for evaluating Kullback-Leibler (KL) divergence and Squared Hellinger (SH) distance between empirical data and a model distribution is proposed. This method exclusively utilises the empirical Cumulative Distribution Function (CDF) of the data and the CDF of the model, avoiding data processing such as histogram binning. The proposed method converges almost surely, with the proof based on the use of exponentially distributed waiting times. An example demonstrates convergence of the KL divergence and SH distance to their true values when utilising the Generalised Pareto (GP) distribution as empirical data and the K distribution as the model. Another example illustrates the goodness of fit of these (GP and K-distribution) models to real sea clutter data from the widely used Intelligent PIxel processing X-band (IPIX) measurements. The proposed method can be applied to assess the goodness of fit of various models (not limited to GP or K distribution) to clutter measurement data such as those from the Adriatic Sea. Distinctive features of this small and immature sea, like the presence of over 1300 islands that affect local wind and wave patterns, are likely to result in an amplitude distribution of sea clutter returns that differs from predictions of models designed for oceans or open seas. However, to the author's knowledge, no data on this specific topic are currently available in the open literature, and such measurements have yet to be conducted.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.