{"title":"Tethered Balloon Cluster Deployments and Optimization for Emergency Communication Networks.","authors":"Mingyu Guan, Zhongxiao Feng, Shengming Jiang, Weiming Zhou","doi":"10.3390/e26121071","DOIUrl":null,"url":null,"abstract":"<p><p>Natural disasters can severely disrupt conventional communication systems, hampering relief efforts. High-altitude tethered balloon base stations (HATBBSs) are a promising solution to communication disruptions, providing wide communication coverage in disaster-stricken areas. However, a single HATBBS is insufficient for large disaster zones, and limited resources may restrict the number and energy capacity of available base stations. To address these challenges, this study proposes a cluster deployment of tethered balloons to form flying ad hoc networks (FANETs) as a backbone for post-disaster communications. A meta-heuristic-based multi-objective particle swarm optimization (MOPSO) algorithm is employed to optimize the placement of balloons and power control to maximize target coverage and system energy efficiency. Comparative analysis with a stochastic algorithm (SA) demonstrates that MOPSO converges faster, with significant advantages in determining optimal balloon placement. The simulation results show that MOPSO effectively improves network throughput while reducing average delay and packet loss rate.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121071","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural disasters can severely disrupt conventional communication systems, hampering relief efforts. High-altitude tethered balloon base stations (HATBBSs) are a promising solution to communication disruptions, providing wide communication coverage in disaster-stricken areas. However, a single HATBBS is insufficient for large disaster zones, and limited resources may restrict the number and energy capacity of available base stations. To address these challenges, this study proposes a cluster deployment of tethered balloons to form flying ad hoc networks (FANETs) as a backbone for post-disaster communications. A meta-heuristic-based multi-objective particle swarm optimization (MOPSO) algorithm is employed to optimize the placement of balloons and power control to maximize target coverage and system energy efficiency. Comparative analysis with a stochastic algorithm (SA) demonstrates that MOPSO converges faster, with significant advantages in determining optimal balloon placement. The simulation results show that MOPSO effectively improves network throughput while reducing average delay and packet loss rate.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.