{"title":"Solving the Independent Domination Problem by the Quantum Approximate Optimization Algorithm.","authors":"Haoqian Pan, Changhong Lu","doi":"10.3390/e26121057","DOIUrl":null,"url":null,"abstract":"<p><p>In the wake of quantum computing advancements and quantum algorithmic progress, quantum algorithms are increasingly being employed to address a myriad of combinatorial optimization problems. Among these, the Independent Domination Problem (IDP), a derivative of the Domination Problem, has practical implications in various real-world scenarios. Despite this, existing classical algorithms for the IDP are plagued by high computational complexity, and quantum algorithms have yet to tackle this challenge. This paper introduces a Quantum Approximate Optimization Algorithm (QAOA)-based approach to address the IDP. Utilizing IBM's qasm_simulator, we have demonstrated the efficacy of the QAOA in solving the IDP under specific parameter settings, with a computational complexity that surpasses that of classical methods. Our findings offer a novel avenue for the resolution of the IDP.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121057","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the wake of quantum computing advancements and quantum algorithmic progress, quantum algorithms are increasingly being employed to address a myriad of combinatorial optimization problems. Among these, the Independent Domination Problem (IDP), a derivative of the Domination Problem, has practical implications in various real-world scenarios. Despite this, existing classical algorithms for the IDP are plagued by high computational complexity, and quantum algorithms have yet to tackle this challenge. This paper introduces a Quantum Approximate Optimization Algorithm (QAOA)-based approach to address the IDP. Utilizing IBM's qasm_simulator, we have demonstrated the efficacy of the QAOA in solving the IDP under specific parameter settings, with a computational complexity that surpasses that of classical methods. Our findings offer a novel avenue for the resolution of the IDP.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.