{"title":"Statistical Testing of Random Number Generators and Their Improvement Using Randomness Extraction.","authors":"Cameron Foreman, Richie Yeung, Florian J Curchod","doi":"10.3390/e26121053","DOIUrl":null,"url":null,"abstract":"<p><p>Random number generators (RNGs) are notoriously challenging to build and test, especially for cryptographic applications. While statistical tests cannot definitively guarantee an RNG's output quality, they are a powerful verification tool and the only universally applicable testing method. In this work, we design, implement, and present various post-processing methods, using randomness extractors, to improve the RNG output quality and compare them through statistical testing. We begin by performing intensive tests on three RNGs-the 32-bit linear feedback shift register (LFSR), Intel's 'RDSEED,' and IDQuantique's 'Quantis'-and compare their performance. Next, we apply the different post-processing methods to each RNG and conduct further intensive testing on the processed output. To facilitate this, we introduce a comprehensive statistical testing environment, based on existing test suites, that can be parametrised for lightweight (fast) to intensive testing.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121053","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Random number generators (RNGs) are notoriously challenging to build and test, especially for cryptographic applications. While statistical tests cannot definitively guarantee an RNG's output quality, they are a powerful verification tool and the only universally applicable testing method. In this work, we design, implement, and present various post-processing methods, using randomness extractors, to improve the RNG output quality and compare them through statistical testing. We begin by performing intensive tests on three RNGs-the 32-bit linear feedback shift register (LFSR), Intel's 'RDSEED,' and IDQuantique's 'Quantis'-and compare their performance. Next, we apply the different post-processing methods to each RNG and conduct further intensive testing on the processed output. To facilitate this, we introduce a comprehensive statistical testing environment, based on existing test suites, that can be parametrised for lightweight (fast) to intensive testing.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.