Qing Qin, Kaiyue Zhang, Yanqiu Che, Chunxiao Han, Yingmei Qin, Shanshan Li
{"title":"Charactering Neural Spiking Activity Evoked by Acupuncture Through Coupling Generalized Linear Model.","authors":"Qing Qin, Kaiyue Zhang, Yanqiu Che, Chunxiao Han, Yingmei Qin, Shanshan Li","doi":"10.3390/e26121088","DOIUrl":null,"url":null,"abstract":"<p><p>Acupuncturing the ST36 acupoint can evoke a responding activity in the spinal dorsal root ganglia and generate spikes. In order to identify the responding mechanism of different acupuncture manipulations, in this paper the spike history of neurons is taken as the starting point and the coupling generalized linear model is adopted to encode the neuronal spiking activity evoked by different acupuncture manipulations. Then, maximum likelihood estimation is used to fit the model parameters and estimate the coupling parameters of stimulus, the self-coupling parameters of the neuron's own spike history and the cross-coupling parameters of other neurons' spike history. We use simulation data to test the estimation algorithm's effectiveness and analyze the main factors that evoke neuronal responding activity. Finally, we use the coupling generalized linear model to encode neuronal spiking activity evoked by two acupuncture manipulations, and estimate the coupling parameters of stimulus, the self-coupling parameters and the cross-coupling parameters. The results show that in acupuncture experiments, acupuncture stimulus is the inducing factor of neuronal spiking activity, and the cross-coupling of other neurons' spike history is the main factor of neuronal spiking activity. Additionally, the higher the amplitude of the neuronal spiking waveform, the greater the cross-coupling parameter. This lays a theoretical foundation for the scientific application of acupuncture therapy.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121088","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acupuncturing the ST36 acupoint can evoke a responding activity in the spinal dorsal root ganglia and generate spikes. In order to identify the responding mechanism of different acupuncture manipulations, in this paper the spike history of neurons is taken as the starting point and the coupling generalized linear model is adopted to encode the neuronal spiking activity evoked by different acupuncture manipulations. Then, maximum likelihood estimation is used to fit the model parameters and estimate the coupling parameters of stimulus, the self-coupling parameters of the neuron's own spike history and the cross-coupling parameters of other neurons' spike history. We use simulation data to test the estimation algorithm's effectiveness and analyze the main factors that evoke neuronal responding activity. Finally, we use the coupling generalized linear model to encode neuronal spiking activity evoked by two acupuncture manipulations, and estimate the coupling parameters of stimulus, the self-coupling parameters and the cross-coupling parameters. The results show that in acupuncture experiments, acupuncture stimulus is the inducing factor of neuronal spiking activity, and the cross-coupling of other neurons' spike history is the main factor of neuronal spiking activity. Additionally, the higher the amplitude of the neuronal spiking waveform, the greater the cross-coupling parameter. This lays a theoretical foundation for the scientific application of acupuncture therapy.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.