{"title":"Machine Learning Advances in High-Entropy Alloys: A Mini-Review.","authors":"Yibo Sun, Jun Ni","doi":"10.3390/e26121119","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of machine learning has increased exponentially over the past decade. The utilization of machine learning to predict and design materials has become a pivotal tool for accelerating materials development. High-entropy alloys are particularly intriguing candidates for exemplifying the potency of machine learning due to their superior mechanical properties, vast compositional space, and intricate chemical interactions. This review examines the general process of developing machine learning models. The advances and new algorithms of machine learning in the field of high-entropy alloys are presented in each part of the process. These advances are based on both improvements in computer algorithms and physical representations that focus on the unique ordering properties of high-entropy alloys. We also show the results of generative models, data augmentation, and transfer learning in high-entropy alloys and conclude with a summary of the challenges still faced in machine learning high-entropy alloys today.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121119","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The efficacy of machine learning has increased exponentially over the past decade. The utilization of machine learning to predict and design materials has become a pivotal tool for accelerating materials development. High-entropy alloys are particularly intriguing candidates for exemplifying the potency of machine learning due to their superior mechanical properties, vast compositional space, and intricate chemical interactions. This review examines the general process of developing machine learning models. The advances and new algorithms of machine learning in the field of high-entropy alloys are presented in each part of the process. These advances are based on both improvements in computer algorithms and physical representations that focus on the unique ordering properties of high-entropy alloys. We also show the results of generative models, data augmentation, and transfer learning in high-entropy alloys and conclude with a summary of the challenges still faced in machine learning high-entropy alloys today.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.