Shuairan Zhang, Shiqi Liu, Hang Dong, Xiuli Jin, Jing Sun, Ji Sun, Gang Wu, Yiling Li
{"title":"CD63-high macrophage-derived exosomal miR-6876-5p promotes hepatocellular carcinoma stemness via PTEN/Akt-mediated EMT pathway.","authors":"Shuairan Zhang, Shiqi Liu, Hang Dong, Xiuli Jin, Jing Sun, Ji Sun, Gang Wu, Yiling Li","doi":"10.1097/HC9.0000000000000616","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accumulating evidence suggests that microRNAs derived from macrophage exosomes can regulate the stemness and progression of cancer. However, the interaction mechanisms between HCC cells and tumor-associated macrophages remain unclear.</p><p><strong>Methods: </strong>Exosomes were extracted from control or CD63 overexpression macrophages and co-cultured with HCC cells. The stemness, proliferation, epithelial-mesenchymal transition, and in vivo tumorigenicity of HCC cells were assessed to determine the role of CD63-high macrophage-derived exosomal miR-6876-5p in HCC. The binding relationship between miR-6876-5p and the PTEN/Akt axis was also investigated.</p><p><strong>Results: </strong>Elevated CD63 expression was associated with increased tumor-associated macrophage infiltration and poorer prognosis in HCC. CD63-high macrophage-derived exosomes enhanced HCC cell proliferation, stemness, and epithelial-mesenchymal transition. miR-6876-5p within these exosomes was identified as a key mediator, promoting HCC progression by targeting PTEN and activating the Akt signaling pathway. In vivo studies confirmed that CD63-high macrophage-derived exosomal miR-6876-5p accelerated tumor growth and enhanced stemness in HCC cells.</p><p><strong>Conclusions: </strong>CD63-high macrophage-derived exosomes, particularly those enriched with miR-6876-5p, play a pivotal role in HCC progression by enhancing stemness and promoting epithelial-mesenchymal transition through the PTEN/Akt pathway. Targeting these exosomes and their microRNAs offers a promising therapeutic strategy forHCC.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"9 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Accumulating evidence suggests that microRNAs derived from macrophage exosomes can regulate the stemness and progression of cancer. However, the interaction mechanisms between HCC cells and tumor-associated macrophages remain unclear.
Methods: Exosomes were extracted from control or CD63 overexpression macrophages and co-cultured with HCC cells. The stemness, proliferation, epithelial-mesenchymal transition, and in vivo tumorigenicity of HCC cells were assessed to determine the role of CD63-high macrophage-derived exosomal miR-6876-5p in HCC. The binding relationship between miR-6876-5p and the PTEN/Akt axis was also investigated.
Results: Elevated CD63 expression was associated with increased tumor-associated macrophage infiltration and poorer prognosis in HCC. CD63-high macrophage-derived exosomes enhanced HCC cell proliferation, stemness, and epithelial-mesenchymal transition. miR-6876-5p within these exosomes was identified as a key mediator, promoting HCC progression by targeting PTEN and activating the Akt signaling pathway. In vivo studies confirmed that CD63-high macrophage-derived exosomal miR-6876-5p accelerated tumor growth and enhanced stemness in HCC cells.
Conclusions: CD63-high macrophage-derived exosomes, particularly those enriched with miR-6876-5p, play a pivotal role in HCC progression by enhancing stemness and promoting epithelial-mesenchymal transition through the PTEN/Akt pathway. Targeting these exosomes and their microRNAs offers a promising therapeutic strategy forHCC.
期刊介绍:
Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction.