Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2025-01-08 DOI:10.1093/femsec/fiaf003
Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen
{"title":"Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats.","authors":"Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen","doi":"10.1093/femsec/fiaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered seven days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered seven days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts. Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats. Spinach Seed Microbiome Characteristics Linked to Suppressiveness Against Globisporangium ultimum Damping-Off. Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms. Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1