A Complete Assembly and Annotation of the American Shad Genome Yields Insights into the Origins of Diadromy.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2025-01-06 DOI:10.1093/gbe/evae276
Jonathan P Velotta, Azwad R Iqbal, Emma S Glenn, Ryan P Franckowiak, Giulio Formenti, Jacquelyn Mountcastle, Jennifer Balacco, Alan Tracey, Ying Sims, Kerstin Howe, Olivier Fedrigo, Erich D Jarvis, Nina O Therkildsen
{"title":"A Complete Assembly and Annotation of the American Shad Genome Yields Insights into the Origins of Diadromy.","authors":"Jonathan P Velotta, Azwad R Iqbal, Emma S Glenn, Ryan P Franckowiak, Giulio Formenti, Jacquelyn Mountcastle, Jennifer Balacco, Alan Tracey, Ying Sims, Kerstin Howe, Olivier Fedrigo, Erich D Jarvis, Nina O Therkildsen","doi":"10.1093/gbe/evae276","DOIUrl":null,"url":null,"abstract":"<p><p>Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance. Among the Clupeiformes, there is a large amount of variation in salinity habitat and many independent instances of salinity boundary crossing, making this taxon well-suited for studies of mechanisms underlying ecological transitions. Our initial analysis of the American shad genome reveals several unique insights for future study including: (i) that genomic repeat content is among the highest of any fish studied to date; (ii) that genome-wide heterozygosity is low and may be associated with range-wide population collapses since the 19th century; and (iii) that natural selection has acted on the branch leading to the diadromous genus Alosa. Our analysis suggests that functional targets of natural selection may include diet, particularly lipid metabolism, as well as cytoskeletal remodeling and sensing of salinity changes. Natural selection on these functions is expected in the transition from a marine to diadromous life history, particularly in the tolerance of nutrient- and ion-devoid freshwater. We anticipate that our assembly of the American shad genome will be used to test future hypotheses on adaptation to novel environments, the origins of diadromy, and adaptive variation in life history strategies, among others.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae276","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance. Among the Clupeiformes, there is a large amount of variation in salinity habitat and many independent instances of salinity boundary crossing, making this taxon well-suited for studies of mechanisms underlying ecological transitions. Our initial analysis of the American shad genome reveals several unique insights for future study including: (i) that genomic repeat content is among the highest of any fish studied to date; (ii) that genome-wide heterozygosity is low and may be associated with range-wide population collapses since the 19th century; and (iii) that natural selection has acted on the branch leading to the diadromous genus Alosa. Our analysis suggests that functional targets of natural selection may include diet, particularly lipid metabolism, as well as cytoskeletal remodeling and sensing of salinity changes. Natural selection on these functions is expected in the transition from a marine to diadromous life history, particularly in the tolerance of nutrient- and ion-devoid freshwater. We anticipate that our assembly of the American shad genome will be used to test future hypotheses on adaptation to novel environments, the origins of diadromy, and adaptive variation in life history strategies, among others.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对美洲鲥鱼基因组的完整组装和注释,可以让我们深入了解二元化的起源。
跨越生态边界的过渡,例如将淡水与海洋分开的生态边界,是表型创新和生物多样性的主要驱动力。尽管它们在进化史上很重要,但我们对完成这种转变的机制知之甚少。为了帮助阐明这些机制,我们对美洲鲥鱼(Alosa sapidissima)的基因组进行了第一次高质量的、近乎完整的组装和注释,这是一种具有重大文化和历史意义的双雌雄(在不同盐度之间洄游)鱼。在棒形目中,盐度栖息地的变化很大,并且有几个独立的盐度边界跨越实例,这使得该分类群非常适合研究生态转变的机制。我们对美洲鲥鱼基因组的初步分析为未来的研究揭示了一些独特的见解,包括:1)基因组重复含量是迄今为止研究过的所有鱼类中最高的;2)全基因组杂合性较低,可能与19世纪以来大范围种群崩溃有关;3)自然选择作用于导致双栖阿洛萨属的分支。我们的分析表明,自然选择的功能目标可能包括饮食,特别是脂质代谢,以及细胞骨架重塑和盐度变化的感觉。在从海洋生命史到双栖生命史的过渡中,特别是在对缺乏营养和离子的淡水的耐受性方面,这些功能的自然选择是预期的。我们预计,我们近乎完整和高质量的美洲鲥鱼基因组组装将被用于测试未来关于适应新环境的假设,二元化的起源,以及生活史策略中的适应性变异等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Massive gene loss in the fungus Sporothrix epigloea accompanied a shift to life in a glucuronoxylomannan-based gel matrix. Plasmodium falciparum CyRPA glycan binding does not explain adaptation to humans. Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome. Functional carbohydrate-active enzymes acquired by horizontal gene transfer from plants in the whitefly Bemisia tabaci. Convergent evolution and predictability of gene copy numbers associated with diets in mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1