{"title":"Zinc Deficiency Reduces Intestinal Secretory Immunoglobulin A and Induces Inflammatory Responses via the Gut-Liver Axis","authors":"Takamasa Kido, Hiroyuki Yanagisawa, Machi Suka","doi":"10.1111/imm.13896","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nutritional zinc (Zn) deficiency could impair immune function and affect bowel conditions. However, the mechanism by which Zn deficiency affects the immune function of gut-associated lymphoid tissue (GALT) remains unclear. We investigated how Zn deficiency affects the function of GALT and level of secretory IgA (sIgA), a key component of the intestinal immune barrier, its underlying mechanisms, and whether Zn deficiency induces bacterial translocation to the liver. As previous research has indicated that interleukin (IL)-4 administration or Zn supplementation has a beneficial effect on the spleen of Zn-deficient rats, we investigated whether these supplements reverse the GALT immune system. Five-week-old male rats were fed a standard diet, Zn-deficient diet supplemented with saline or IL-4 for 6 weeks, or Zn-deficient diet followed by a standard diet for 4 weeks. Zn deficiency suppressed sIgA secretion in the intestinal tract by affecting GALT function and induced inflammatory responses through bacterial translocation to the liver via the portal vein. Furthermore, IL-4 administration and Zn supplementation in rats with Zn deficiency elicited comparable beneficial effects on GALT function, suggesting that the administration of either IL-4 or Zn could prevent inflammatory response via bacterial translocation to the liver.</p>\n </div>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"174 3","pages":"363-373"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13896","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nutritional zinc (Zn) deficiency could impair immune function and affect bowel conditions. However, the mechanism by which Zn deficiency affects the immune function of gut-associated lymphoid tissue (GALT) remains unclear. We investigated how Zn deficiency affects the function of GALT and level of secretory IgA (sIgA), a key component of the intestinal immune barrier, its underlying mechanisms, and whether Zn deficiency induces bacterial translocation to the liver. As previous research has indicated that interleukin (IL)-4 administration or Zn supplementation has a beneficial effect on the spleen of Zn-deficient rats, we investigated whether these supplements reverse the GALT immune system. Five-week-old male rats were fed a standard diet, Zn-deficient diet supplemented with saline or IL-4 for 6 weeks, or Zn-deficient diet followed by a standard diet for 4 weeks. Zn deficiency suppressed sIgA secretion in the intestinal tract by affecting GALT function and induced inflammatory responses through bacterial translocation to the liver via the portal vein. Furthermore, IL-4 administration and Zn supplementation in rats with Zn deficiency elicited comparable beneficial effects on GALT function, suggesting that the administration of either IL-4 or Zn could prevent inflammatory response via bacterial translocation to the liver.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.