Na Ge, Jin-Shan Jia, Qing-Yan Wang, Chao-Lin Li, Min Huang, Jun-Wen Chen
{"title":"A genome-wide survey of DNA methylation reveals hyper-methylation regulates after-ripening and dormancy of recalcitrant Panax notoginseng seeds.","authors":"Na Ge, Jin-Shan Jia, Qing-Yan Wang, Chao-Lin Li, Min Huang, Jun-Wen Chen","doi":"10.1093/jxb/erae508","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process. We performed DNA methylomes, siRNA profiles, and transcriptomes of embryo and endosperm in P. notoginseng seeds at different after-ripening stages. Herein, we find that the hyper-methylation contributes to the increase in DNA methylation during the after-ripening process. The endosperm genome is hyper-methylated compared to the embryo genome. The hyper-methylation is caused by the high expression level of DNA methyltransferase PnCMT2 in the seeds. The hyper-methylation alters gene transcription levels to regulate the after-ripening and dormancy of recalcitrant seeds. For example, it inhibits the expression of genes in embryo development to make seeds maintain a dormant status. Together, our findings reveal an increase in DNA methylation and its vital driver in gene expression, and thus elucidate how hyper-methylation regulates the after-ripening in recalcitrant MPD-typed seeds. This work establishes a key role for epigenetics in regulating the dormancy of MPD-typed seeds with recalcitrant characteristics.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae508","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process. We performed DNA methylomes, siRNA profiles, and transcriptomes of embryo and endosperm in P. notoginseng seeds at different after-ripening stages. Herein, we find that the hyper-methylation contributes to the increase in DNA methylation during the after-ripening process. The endosperm genome is hyper-methylated compared to the embryo genome. The hyper-methylation is caused by the high expression level of DNA methyltransferase PnCMT2 in the seeds. The hyper-methylation alters gene transcription levels to regulate the after-ripening and dormancy of recalcitrant seeds. For example, it inhibits the expression of genes in embryo development to make seeds maintain a dormant status. Together, our findings reveal an increase in DNA methylation and its vital driver in gene expression, and thus elucidate how hyper-methylation regulates the after-ripening in recalcitrant MPD-typed seeds. This work establishes a key role for epigenetics in regulating the dormancy of MPD-typed seeds with recalcitrant characteristics.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.