{"title":"Genetically Confirmed Optimal Causal Association of Cerebrospinal Fluid Metabolites With Hemorrhagic Stroke.","authors":"Yingjie Shen, Yaolou Wang, Yongze Shen, Xi Zhang, Zhao Yu, Hangjia Xu, Tie Lin, Yiwei Rong, Chunmei Guo, Aili Gao, Hongsheng Liang","doi":"10.1111/jnc.16293","DOIUrl":null,"url":null,"abstract":"<p><p>Hemorrhagic stroke (HS) mainly includes intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), both of which seriously affect the patient's prognosis. Cerebrospinal fluid (CSF) metabolites and HS showed a link in observational studies. However, the causal association between them is not clear. We aimed to establish the optimal causality of CSF metabolites with HS. Mendelian randomization (MR) was employed to identify associations between CSF metabolites and different sources of HS. Univariable MR and false discovery rates (FDR) were used to identify initial causal associations. Linkage disequilibrium score regression determined genetic correlations. Multiple sensitive analyses ensured the reliability of the results. Multivariable MR and MR Bayesian Model Averaging were used to identify the optimal causal associations. The combined effects of metabolites and HS were assessed by meta-analyses. Pathway analyses were performed to identify potential pathways of action. Reverse MR was also conducted to identify reverse causal associations. Finally, Corresponding blood metabolites were used to explore the multiple roles of metabolites. We identified 20 CSF metabolites and six metabolic pathways associated with ICH; 15 CSF metabolites and three metabolic pathways associated with SAH. Nineteen and seven metabolites were causally associated with deep and lobar ICH, respectively. CSF levels of mannose (OR 0.63; 95% CI 0.45-0.88; P<sub>combined</sub> = 0.0059) and N-acetyltaurine (OR 0.68; 95% CI 0.47-0.98; P<sub>combined</sub> = 0.0395) may serve as the optimal exposures for ICH and SAH, respectively. Additionally, CSF ascorbic acid 3-sulfate levels significantly decrease the risk of deep ICH (OR 0.79; 95% CI 0.66-0.94; p = 0.0065; P<sub>FDR</sub> = 0.091). Supplemental analysis of blood metabolites suggested multiple roles for CSF and blood N-formylanthranilic acid and hippurate. There are significant causal associations between CSF metabolites and HS, which provides a further rationale for the prevention and monitoring of ICH and SAH.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 1","pages":"e16293"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16293","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hemorrhagic stroke (HS) mainly includes intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), both of which seriously affect the patient's prognosis. Cerebrospinal fluid (CSF) metabolites and HS showed a link in observational studies. However, the causal association between them is not clear. We aimed to establish the optimal causality of CSF metabolites with HS. Mendelian randomization (MR) was employed to identify associations between CSF metabolites and different sources of HS. Univariable MR and false discovery rates (FDR) were used to identify initial causal associations. Linkage disequilibrium score regression determined genetic correlations. Multiple sensitive analyses ensured the reliability of the results. Multivariable MR and MR Bayesian Model Averaging were used to identify the optimal causal associations. The combined effects of metabolites and HS were assessed by meta-analyses. Pathway analyses were performed to identify potential pathways of action. Reverse MR was also conducted to identify reverse causal associations. Finally, Corresponding blood metabolites were used to explore the multiple roles of metabolites. We identified 20 CSF metabolites and six metabolic pathways associated with ICH; 15 CSF metabolites and three metabolic pathways associated with SAH. Nineteen and seven metabolites were causally associated with deep and lobar ICH, respectively. CSF levels of mannose (OR 0.63; 95% CI 0.45-0.88; Pcombined = 0.0059) and N-acetyltaurine (OR 0.68; 95% CI 0.47-0.98; Pcombined = 0.0395) may serve as the optimal exposures for ICH and SAH, respectively. Additionally, CSF ascorbic acid 3-sulfate levels significantly decrease the risk of deep ICH (OR 0.79; 95% CI 0.66-0.94; p = 0.0065; PFDR = 0.091). Supplemental analysis of blood metabolites suggested multiple roles for CSF and blood N-formylanthranilic acid and hippurate. There are significant causal associations between CSF metabolites and HS, which provides a further rationale for the prevention and monitoring of ICH and SAH.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.