A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes
Miranda Sol Orellano , Andrea Scelza-Figueredo , Lucía Lameroli Mauriz , Carolina Sétula , Milagros Argañarás , Catalina Atorrasagasti , Marcelo Javier Perone , Luz Andreone
{"title":"A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes","authors":"Miranda Sol Orellano , Andrea Scelza-Figueredo , Lucía Lameroli Mauriz , Carolina Sétula , Milagros Argañarás , Catalina Atorrasagasti , Marcelo Javier Perone , Luz Andreone","doi":"10.1016/j.lfs.2024.123363","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models. This study aimed to evaluate whether the administration of CpdA can attenuate GLT effects and improve pathophysiological parameters in a murine model of T2D/MS.</div></div><div><h3>Main methods</h3><div>Eight-week-old male C57BL/6NCrl mice were fed either a standard chow diet or a high-fat/high-sucrose diet (HFHS) for 15 weeks. From week 5 of feeding, each group received i.p. injections of CpdA (2.5 μg/g) or vehicle three times a week. We also examined CpdA in vitro effect against GLT using the insulinoma cell line INS-1E and naïve isolated mouse islets.</div></div><div><h3>Key findings</h3><div>CpdA administration in HFHS fed mice improved glucose homeostasis and insulin sensitivity with no apparent side effects. CpdA treatment also preserved pancreatic islet architecture and insulin expression, while reducing hepatic steatosis and visceral adipose tissue inflammation induced by HFHS diet. In vitro assays in INS-1E cells and naïve isolated mouse islets demonstrated that CpdA counteracted GLT-induced inhibition of glucose-stimulated insulin secretion and supported the expression of key β-cell identity genes under GLT conditions.</div></div><div><h3>Significance</h3><div>These findings highlight the potential protective effect of CpdA in preserving β-cell functionality and peripheral tissue physiology in the context of T2D/MS.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"362 ","pages":"Article 123363"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524009536","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models. This study aimed to evaluate whether the administration of CpdA can attenuate GLT effects and improve pathophysiological parameters in a murine model of T2D/MS.
Main methods
Eight-week-old male C57BL/6NCrl mice were fed either a standard chow diet or a high-fat/high-sucrose diet (HFHS) for 15 weeks. From week 5 of feeding, each group received i.p. injections of CpdA (2.5 μg/g) or vehicle three times a week. We also examined CpdA in vitro effect against GLT using the insulinoma cell line INS-1E and naïve isolated mouse islets.
Key findings
CpdA administration in HFHS fed mice improved glucose homeostasis and insulin sensitivity with no apparent side effects. CpdA treatment also preserved pancreatic islet architecture and insulin expression, while reducing hepatic steatosis and visceral adipose tissue inflammation induced by HFHS diet. In vitro assays in INS-1E cells and naïve isolated mouse islets demonstrated that CpdA counteracted GLT-induced inhibition of glucose-stimulated insulin secretion and supported the expression of key β-cell identity genes under GLT conditions.
Significance
These findings highlight the potential protective effect of CpdA in preserving β-cell functionality and peripheral tissue physiology in the context of T2D/MS.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.