Kota Hayashi, Tsung-Hsun Hsieh, Yen-Lin Huang, David Chwei-Chin Chuang
{"title":"Using Transcranial Magnetic Nerve Stimulation to Differentiate Motor and Sensory Fascicles in a Mixed Nerve: Experimental Rat Study.","authors":"Kota Hayashi, Tsung-Hsun Hsieh, Yen-Lin Huang, David Chwei-Chin Chuang","doi":"10.1055/a-2483-5556","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Accurately matching the correct fascicles in a ruptured mixed nerve is critical for functional recovery. This study investigates the use of transcranial magnetic stimulation (TMS) to differentiate motor and sensory fascicles in a mixed nerve.</p><p><strong>Methods: </strong> In all 40 rats, the median nerve in the left upper arm was evenly split into three segments. The rats were separated into two groups. In Group A (20 rats), the segment with the highest amplitude during TMS was selected as the motor neurotizer and transferred to the musculocutaneous nerve. In Group B (20 rats), only the medial one-third segment was selected and transferred without using TMS. The results were compared using grooming tests, nerve electrophysiological studies, muscle tetanus contraction force measurements, muscle weight, and axon counts at 16 weeks.</p><p><strong>Results: </strong> The grooming test showed that Group A performed significantly better than Group B at 12 and 16 weeks postoperatively. Tetanic muscle contraction force measurements also revealed that Group A had significantly better outcomes than Group B. However, electrophysiological testing, muscle weight, and axon counts showed no significant differences between the two groups.</p><p><strong>Conclusion: </strong> This study suggests that TMS can be used to distinguish motor fascicles from sensory fascicles in a mixed nerve. It is desirable to apply this technique intraoperatively to differentiate motor and sensory fascicles for appropriate nerve matching and to select the motor fascicles as a motor neurotizer for functioning free muscle innervation in human mixed nerve injury.</p>","PeriodicalId":16949,"journal":{"name":"Journal of reconstructive microsurgery","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of reconstructive microsurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2483-5556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurately matching the correct fascicles in a ruptured mixed nerve is critical for functional recovery. This study investigates the use of transcranial magnetic stimulation (TMS) to differentiate motor and sensory fascicles in a mixed nerve.
Methods: In all 40 rats, the median nerve in the left upper arm was evenly split into three segments. The rats were separated into two groups. In Group A (20 rats), the segment with the highest amplitude during TMS was selected as the motor neurotizer and transferred to the musculocutaneous nerve. In Group B (20 rats), only the medial one-third segment was selected and transferred without using TMS. The results were compared using grooming tests, nerve electrophysiological studies, muscle tetanus contraction force measurements, muscle weight, and axon counts at 16 weeks.
Results: The grooming test showed that Group A performed significantly better than Group B at 12 and 16 weeks postoperatively. Tetanic muscle contraction force measurements also revealed that Group A had significantly better outcomes than Group B. However, electrophysiological testing, muscle weight, and axon counts showed no significant differences between the two groups.
Conclusion: This study suggests that TMS can be used to distinguish motor fascicles from sensory fascicles in a mixed nerve. It is desirable to apply this technique intraoperatively to differentiate motor and sensory fascicles for appropriate nerve matching and to select the motor fascicles as a motor neurotizer for functioning free muscle innervation in human mixed nerve injury.
期刊介绍:
The Journal of Reconstructive Microsurgery is a peer-reviewed, indexed journal that provides an international forum for the publication of articles focusing on reconstructive microsurgery and complex reconstructive surgery. The journal was originally established in 1984 for the microsurgical community to publish and share academic papers.
The Journal of Reconstructive Microsurgery provides the latest in original research spanning basic laboratory, translational, and clinical investigations. Review papers cover current topics in complex reconstruction and microsurgery. In addition, special sections discuss new technologies, innovations, materials, and significant problem cases.
The journal welcomes controversial topics, editorial comments, book reviews, and letters to the Editor, in order to complete the balanced spectrum of information available in the Journal of Reconstructive Microsurgery. All articles undergo stringent peer review by international experts in the specialty.