Skin adaptation in lower limb amputees assessed through Raman spectroscopy and mechanical characterization.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of The Royal Society Interface Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI:10.1098/rsif.2024.0475
Jack Hayes, Jennifer Andrews, Omar Abdelwahab, Tomas Andriuskevicius, Tom Briggs, Ralph Gordon, Peter Worsley, Claire A Higgins, Marc Masen
{"title":"Skin adaptation in lower limb amputees assessed through Raman spectroscopy and mechanical characterization.","authors":"Jack Hayes, Jennifer Andrews, Omar Abdelwahab, Tomas Andriuskevicius, Tom Briggs, Ralph Gordon, Peter Worsley, Claire A Higgins, Marc Masen","doi":"10.1098/rsif.2024.0475","DOIUrl":null,"url":null,"abstract":"<p><p>Following lower limb amputation residuum skin from the lower leg is used to reconstruct the residual limb. Unlike skin on the sole of the foot (plantar skin), leg skin is not inherently load bearing. Despite this, leg skin is required to be load bearing in the prosthetic socket. Current hypotheses propose that lower limb amputee skin can adapt to become load bearing with repeated prosthesis use. Here, we show using confocal Raman spectroscopy, mechanical characterization and cytokine analysis that adaptations occur which actually result in impaired barrier function, higher baseline inflammation, increased coefficient of friction and reduced stiffness. Our results demonstrate that repeated frictional trauma does not confer beneficial adaptations in amputee skin. We hypothesize that non-plantar skin lacks the biological capabilities to respond positively to repeated mechanical trauma in the same manner observed in plantar skin. This finding highlights the need for improved therapies as opposed to current mechanical conditioning or product solutions that directly relate to improving load-bearing capacity on the skin of lower limb amputees. This study also highlights the importance of measuring multiple parameters of application-specific skin at different scales for skin tribology applications.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240475"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0475","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Following lower limb amputation residuum skin from the lower leg is used to reconstruct the residual limb. Unlike skin on the sole of the foot (plantar skin), leg skin is not inherently load bearing. Despite this, leg skin is required to be load bearing in the prosthetic socket. Current hypotheses propose that lower limb amputee skin can adapt to become load bearing with repeated prosthesis use. Here, we show using confocal Raman spectroscopy, mechanical characterization and cytokine analysis that adaptations occur which actually result in impaired barrier function, higher baseline inflammation, increased coefficient of friction and reduced stiffness. Our results demonstrate that repeated frictional trauma does not confer beneficial adaptations in amputee skin. We hypothesize that non-plantar skin lacks the biological capabilities to respond positively to repeated mechanical trauma in the same manner observed in plantar skin. This finding highlights the need for improved therapies as opposed to current mechanical conditioning or product solutions that directly relate to improving load-bearing capacity on the skin of lower limb amputees. This study also highlights the importance of measuring multiple parameters of application-specific skin at different scales for skin tribology applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过拉曼光谱和力学表征评估下肢截肢者的皮肤适应性。
下肢截肢后,残肢皮肤用于重建残肢。不像脚底的皮肤(足底皮肤),腿部皮肤不具有固有的承重能力。尽管如此,腿部皮肤仍需要在假肢窝中承受负荷。目前的假设认为,下肢截肢者的皮肤可以适应反复使用假肢的负荷。在这里,我们使用共聚焦拉曼光谱、力学表征和细胞因子分析表明,适应性的发生实际上导致屏障功能受损、基线炎症升高、摩擦系数增加和刚度降低。我们的研究结果表明,反复的摩擦创伤不会给截肢者的皮肤带来有益的适应。我们假设,非足底皮肤缺乏与足底皮肤相同的对重复机械创伤作出积极反应的生物学能力。这一发现强调了改进治疗方法的必要性,而不是目前的机械调节或产品解决方案,直接关系到提高下肢截肢者皮肤的承重能力。本研究还强调了在不同尺度上测量特定应用皮肤的多个参数对于皮肤摩擦学应用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
期刊最新文献
Angular distribution of fractal temporal correlations supports adaptive responses to wobble board instability. Cohesive urban bicycle infrastructure design through optimal transport routing in multilayer networks. Jointed tails enhance control of three-dimensional body rotation. Reciprocating thermochemical mediator of pre-biotic polymer decomposition on mineral surfaces. Bottom-up robust modelling for the foraging behaviour of Physarum polycephalum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1