Xinghua Qin , Haoyu Gong , Lingyan Jin , Yixin Wang , Kai Dang , Hui Li , Qiangsun Zheng
{"title":"Long-term glucosamine supplementation aggravates atrial fibrillation susceptibility by impairing AMPK signaling","authors":"Xinghua Qin , Haoyu Gong , Lingyan Jin , Yixin Wang , Kai Dang , Hui Li , Qiangsun Zheng","doi":"10.1016/j.lfs.2025.123380","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Glucosamine, a widely used dietary supplement, has been linked to potential cardiovascular risks, including atrial fibrillation (AF). This study aimed to investigate the effects of long-term glucosamine supplementation on AF susceptibility and the underlying mechanisms.</div></div><div><h3>Materials and methods</h3><div>C57BL/6 J mice were treated with low-dose (15 mg/kg/day) or high-dose (250 mg/kg/day) glucosamine via drinking water for 6 weeks. AF susceptibility was assessed through transesophageal electrical stimulation. Atrial remodeling was characterized through electrophysiological and echocardiography studies, histological analysis, and molecular examination. AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) was used to validation the underlying mechanism in mice and isolated neonatal atrial cardiomyocytes.</div></div><div><h3>Key findings</h3><div>Long-term high-dose glucosamine supplementation increased AF susceptibility in mice, as indicated by an elevated AF incidence and duration. Glucosamine induced notable electrical remodeling, evidenced by intra-atrial conduction slowing (P wave duration, amplitude, and area), likely attributable to reduced conduction velocity, as confirmed by two-dimensional electrical mapping. Structural remodeling including increased left atrial weight, cardiomyocyte hypertrophy and fibrosis was evident in the atria of glucosamine-treated mice, despite unaffected cardiac function. Mechanistically, glucosamine suppressed atrial AMPK signaling, leading to lipid and glycogen accumulation. Intriguingly, despite impaired atrial AMPK signaling, high-dose glucosamine improved systemic insulin sensitivity. Pharmacological activation of AMPK with AICAR mitigated glucosamine-induced AF susceptibility and associated pathological changes both in vivo and in vitro.</div></div><div><h3>Significance</h3><div>Our findings demonstrate that long-term glucosamine supplementation enhances AF susceptibility, potentially by impairing atrial AMPK signaling, underscoring the importance of caution in the utilization of glucosamine.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"362 ","pages":"Article 123380"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002432052500013X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Glucosamine, a widely used dietary supplement, has been linked to potential cardiovascular risks, including atrial fibrillation (AF). This study aimed to investigate the effects of long-term glucosamine supplementation on AF susceptibility and the underlying mechanisms.
Materials and methods
C57BL/6 J mice were treated with low-dose (15 mg/kg/day) or high-dose (250 mg/kg/day) glucosamine via drinking water for 6 weeks. AF susceptibility was assessed through transesophageal electrical stimulation. Atrial remodeling was characterized through electrophysiological and echocardiography studies, histological analysis, and molecular examination. AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) was used to validation the underlying mechanism in mice and isolated neonatal atrial cardiomyocytes.
Key findings
Long-term high-dose glucosamine supplementation increased AF susceptibility in mice, as indicated by an elevated AF incidence and duration. Glucosamine induced notable electrical remodeling, evidenced by intra-atrial conduction slowing (P wave duration, amplitude, and area), likely attributable to reduced conduction velocity, as confirmed by two-dimensional electrical mapping. Structural remodeling including increased left atrial weight, cardiomyocyte hypertrophy and fibrosis was evident in the atria of glucosamine-treated mice, despite unaffected cardiac function. Mechanistically, glucosamine suppressed atrial AMPK signaling, leading to lipid and glycogen accumulation. Intriguingly, despite impaired atrial AMPK signaling, high-dose glucosamine improved systemic insulin sensitivity. Pharmacological activation of AMPK with AICAR mitigated glucosamine-induced AF susceptibility and associated pathological changes both in vivo and in vitro.
Significance
Our findings demonstrate that long-term glucosamine supplementation enhances AF susceptibility, potentially by impairing atrial AMPK signaling, underscoring the importance of caution in the utilization of glucosamine.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.