Kaustubh Amritkar, Bruno Cuevas-Zuviría, Betül Kaçar
{"title":"Evolutionary Dynamics of RuBisCO: Emergence of the Small Subunit and its Impact Through Time.","authors":"Kaustubh Amritkar, Bruno Cuevas-Zuviría, Betül Kaçar","doi":"10.1093/molbev/msae268","DOIUrl":null,"url":null,"abstract":"<p><p>Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.5 billion years ago, marking a pivotal point in the enzyme's evolutionary history. Here, we performed a comprehensive evolutionary analysis of extant and ancestral RuBisCO sequences and structures to explore the impact of the small subunit's earliest integration on the molecular dynamics of the overall complex. Our simulations suggest that the small subunit restricted the conformational flexibility of the large subunit early in its history, impacting the evolutionary trajectory of the Form-I RuBisCO complex. Molecular dynamics investigations of CO2 and O2 gas distribution around predicted ancient RuBisCO complexes suggest that a proposed \"CO2-reservoir\" role for the small subunit is not conserved throughout the enzyme's evolutionary history. The evolutionary and biophysical response of RuBisCO to changing atmospheric conditions on ancient Earth showcase multi-level and trackable responses of enzymes to environmental shifts over long timescales.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":"42 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae268","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.5 billion years ago, marking a pivotal point in the enzyme's evolutionary history. Here, we performed a comprehensive evolutionary analysis of extant and ancestral RuBisCO sequences and structures to explore the impact of the small subunit's earliest integration on the molecular dynamics of the overall complex. Our simulations suggest that the small subunit restricted the conformational flexibility of the large subunit early in its history, impacting the evolutionary trajectory of the Form-I RuBisCO complex. Molecular dynamics investigations of CO2 and O2 gas distribution around predicted ancient RuBisCO complexes suggest that a proposed "CO2-reservoir" role for the small subunit is not conserved throughout the enzyme's evolutionary history. The evolutionary and biophysical response of RuBisCO to changing atmospheric conditions on ancient Earth showcase multi-level and trackable responses of enzymes to environmental shifts over long timescales.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.