Behind the scenes of cellular organization: Quantifying spatial phenotypes of puncta structures with statistical models including random fields.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY Molecular Biology of the Cell Pub Date : 2025-01-09 DOI:10.1091/mbc.E24-10-0461
Kyriacos Nicolaou, Josiah B Passmore, Lukas C Kapitein, Bela M Mulder, Florian Berger
{"title":"Behind the scenes of cellular organization: Quantifying spatial phenotypes of puncta structures with statistical models including random fields.","authors":"Kyriacos Nicolaou, Josiah B Passmore, Lukas C Kapitein, Bela M Mulder, Florian Berger","doi":"10.1091/mbc.E24-10-0461","DOIUrl":null,"url":null,"abstract":"<p><p>The cellular interior is a spatially complex environment shaped by non-trivial stochastic and biophysical processes. Within this complexity, spatial organizational principles-also called spatial phenotypes-often emerge with functional implications. However, identifying and quantifying these phenotypes in the stochastic intracellular environment is challenging. To overcome this challenge for puncta, we discuss the use of inference of point-process models that link the density of points to other imaged structures and a random field that captures hidden processes. We apply these methods to simulated data and multiplexed immunofluorescence images of Vero E6 cells. Our analysis suggests that peroxisomes are likely to be found near the perinuclear region, overlapping with the ER, and located within a distance of 1 μm to mitochondria. Moreover, the random field captures a hidden variation of the mean density in the order of 15 μm. This length scale could provide critical information for further developing mechanistic hypotheses and models. By using spatial statistical models including random fields, we add a valuable perspective to cell biology.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE24100461"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-10-0461","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cellular interior is a spatially complex environment shaped by non-trivial stochastic and biophysical processes. Within this complexity, spatial organizational principles-also called spatial phenotypes-often emerge with functional implications. However, identifying and quantifying these phenotypes in the stochastic intracellular environment is challenging. To overcome this challenge for puncta, we discuss the use of inference of point-process models that link the density of points to other imaged structures and a random field that captures hidden processes. We apply these methods to simulated data and multiplexed immunofluorescence images of Vero E6 cells. Our analysis suggests that peroxisomes are likely to be found near the perinuclear region, overlapping with the ER, and located within a distance of 1 μm to mitochondria. Moreover, the random field captures a hidden variation of the mean density in the order of 15 μm. This length scale could provide critical information for further developing mechanistic hypotheses and models. By using spatial statistical models including random fields, we add a valuable perspective to cell biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
期刊最新文献
Behind the scenes of cellular organization: Quantifying spatial phenotypes of puncta structures with statistical models including random fields. Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in Tetrahymena thermophila. Cul3 substrate adaptor SPOP targets Nup153 for degradation. Large, recursive membrane platforms are associated to Trop-1, Trop-2 and protein kinase signaling for cell growth. Valosin-containing protein p97 extracts capping protein CP110 from the mother centriole to promote ciliogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1