Kyriacos Nicolaou, Josiah B Passmore, Lukas C Kapitein, Bela M Mulder, Florian Berger
{"title":"Behind the scenes of cellular organization: Quantifying spatial phenotypes of puncta structures with statistical models including random fields.","authors":"Kyriacos Nicolaou, Josiah B Passmore, Lukas C Kapitein, Bela M Mulder, Florian Berger","doi":"10.1091/mbc.E24-10-0461","DOIUrl":null,"url":null,"abstract":"<p><p>The cellular interior is a spatially complex environment shaped by non-trivial stochastic and biophysical processes. Within this complexity, spatial organizational principles-also called spatial phenotypes-often emerge with functional implications. However, identifying and quantifying these phenotypes in the stochastic intracellular environment is challenging. To overcome this challenge for puncta, we discuss the use of inference of point-process models that link the density of points to other imaged structures and a random field that captures hidden processes. We apply these methods to simulated data and multiplexed immunofluorescence images of Vero E6 cells. Our analysis suggests that peroxisomes are likely to be found near the perinuclear region, overlapping with the ER, and located within a distance of 1 μm to mitochondria. Moreover, the random field captures a hidden variation of the mean density in the order of 15 μm. This length scale could provide critical information for further developing mechanistic hypotheses and models. By using spatial statistical models including random fields, we add a valuable perspective to cell biology.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE24100461"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-10-0461","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cellular interior is a spatially complex environment shaped by non-trivial stochastic and biophysical processes. Within this complexity, spatial organizational principles-also called spatial phenotypes-often emerge with functional implications. However, identifying and quantifying these phenotypes in the stochastic intracellular environment is challenging. To overcome this challenge for puncta, we discuss the use of inference of point-process models that link the density of points to other imaged structures and a random field that captures hidden processes. We apply these methods to simulated data and multiplexed immunofluorescence images of Vero E6 cells. Our analysis suggests that peroxisomes are likely to be found near the perinuclear region, overlapping with the ER, and located within a distance of 1 μm to mitochondria. Moreover, the random field captures a hidden variation of the mean density in the order of 15 μm. This length scale could provide critical information for further developing mechanistic hypotheses and models. By using spatial statistical models including random fields, we add a valuable perspective to cell biology.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.