{"title":"Controlled Multi-Dimensional Assembly of Calcium Carbonate Particles with Industrial By-Product Carbide Slag and CO<sub>2</sub>.","authors":"Yuke Shen, Xiaoli Jiang, Chengcai Tang, Wei Ma, Jianyu Cheng, Hongxu Wang, Hongyu Zhu, Lin Zhao, Yagang Zhang, Panfeng Zhao","doi":"10.3390/nano15010016","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of carbide slag, an industrial by-product, as a resource to prepare value-added products has a profound impact not only for sustainable synthesis and the circular economy but also for CO<sub>2</sub> reduction. Herein, we report the very first example of the controlled multi-dimensional assembly of calcium carbonate particles at the micrometer scale with industrial by-product carbide slag and CO<sub>2</sub>. Calcium carbonate particles of distinctly different sizes, shapes, and morphologies are obtained by finely tuning the assembly conditions. This strategy yields diverse assembled structures, including simple cubic, mulberry-like assembled unit, stacked cubic polycrystalline, and rotated polycrystalline structures, using the same starting materials. This innovative approach not only highlights the adaptability and efficiency of utilizing industrial by-products via multi-dimensional assembly but also provides new insights into the potential applications of the resulting calcium carbonate.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of carbide slag, an industrial by-product, as a resource to prepare value-added products has a profound impact not only for sustainable synthesis and the circular economy but also for CO2 reduction. Herein, we report the very first example of the controlled multi-dimensional assembly of calcium carbonate particles at the micrometer scale with industrial by-product carbide slag and CO2. Calcium carbonate particles of distinctly different sizes, shapes, and morphologies are obtained by finely tuning the assembly conditions. This strategy yields diverse assembled structures, including simple cubic, mulberry-like assembled unit, stacked cubic polycrystalline, and rotated polycrystalline structures, using the same starting materials. This innovative approach not only highlights the adaptability and efficiency of utilizing industrial by-products via multi-dimensional assembly but also provides new insights into the potential applications of the resulting calcium carbonate.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.