Electrocatalytic and Photocatalytic N2 Fixation Using Carbon Catalysts.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-01-02 DOI:10.3390/nano15010065
Changchun Xu, Hongli Su, Shuaifei Zhao, Azadeh Nilghaz, Kunning Tang, Luxiang Ma, Zhuo Zou
{"title":"Electrocatalytic and Photocatalytic N<sub>2</sub> Fixation Using Carbon Catalysts.","authors":"Changchun Xu, Hongli Su, Shuaifei Zhao, Azadeh Nilghaz, Kunning Tang, Luxiang Ma, Zhuo Zou","doi":"10.3390/nano15010065","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH<sub>3</sub>, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation. These properties significantly enhance electrocatalytic and photocatalytic nitrogen reduction reaction (NRR) activity. While transition metal-based catalysts have solved the kinetic constraints to activate nitrogen bonds via the donation-back-π approach, there is a problem: the d-orbital electrons of these transition metal atoms tend to generate H-metal bonds, inadvertently amplifying unwanted HER. Because of this, a timely review of defective carbon-based electrocatalysts for NF is imperative. Such a review will succinctly capture recent developments in both experimental and theoretical fields. It will delve into multiple defective engineering approaches to advance the development of ideal carbon-based electrocatalysts and photocatalysts. Furthermore, this review will carefully explore the natural correlation between the structure of these defective carbon-based electrocatalysts and photocatalysts and their NF activity. Finally, novel carbon-based catalysts are introduced to obtain more efficient performance of NF, paving the way for a sustainable future.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010065","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH3, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation. These properties significantly enhance electrocatalytic and photocatalytic nitrogen reduction reaction (NRR) activity. While transition metal-based catalysts have solved the kinetic constraints to activate nitrogen bonds via the donation-back-π approach, there is a problem: the d-orbital electrons of these transition metal atoms tend to generate H-metal bonds, inadvertently amplifying unwanted HER. Because of this, a timely review of defective carbon-based electrocatalysts for NF is imperative. Such a review will succinctly capture recent developments in both experimental and theoretical fields. It will delve into multiple defective engineering approaches to advance the development of ideal carbon-based electrocatalysts and photocatalysts. Furthermore, this review will carefully explore the natural correlation between the structure of these defective carbon-based electrocatalysts and photocatalysts and their NF activity. Finally, novel carbon-based catalysts are introduced to obtain more efficient performance of NF, paving the way for a sustainable future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳催化剂的电催化和光催化固氮。
碳催化剂有望替代目前可用的高能量固氮(NF)方法,用于尿素、NH3或相关氮化合物的固氮。NF的主要挑战是氮分子的自然惯性和竞争性析氢反应(HER)。近年来,碳基材料由于其可调谐的电子结构和易于形成缺陷而取得了重大进展。这些特性显著提高了电催化和光催化氮还原反应(NRR)的活性。虽然基于过渡金属的催化剂已经解决了通过回给π方法激活氮键的动力学限制,但存在一个问题:这些过渡金属原子的d轨道电子倾向于产生h -金属键,无意中放大了不必要的HER。正因为如此,及时回顾有缺陷的碳基电催化剂是必要的。这样一篇综述将简明扼要地介绍实验和理论领域的最新发展。它将深入研究多种缺陷工程方法,以推进理想的碳基电催化剂和光催化剂的开发。此外,本文还将详细探讨这些缺陷型碳基电催化剂和光催化剂的结构与其NF活性之间的自然关系。最后,介绍了新型碳基催化剂,以获得更有效的NF性能,为可持续发展的未来铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
A Thermally Controlled Ultra-Wideband Wide Incident Angle Metamaterial Absorber with Switchable Transmission at the THz Band. A Z-Scheme Heterojunction g-C3N4/WO3 for Efficient Photodegradation of Tetracycline Hydrochloride and Rhodamine B. Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water. Controllable Hydrothermal Synthesis of 1D β-Ga2O3 for Solar-Blind Ultraviolet Photodetection. Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1