Facile Synthesis of Mesoporous NiCo2O4 Nanosheets on Carbon Fibers Cloth as Advanced Electrodes for Asymmetric Supercapacitors.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-12-27 DOI:10.3390/nano15010029
Xiang Zhang
{"title":"Facile Synthesis of Mesoporous NiCo<sub>2</sub>O<sub>4</sub> Nanosheets on Carbon Fibers Cloth as Advanced Electrodes for Asymmetric Supercapacitors.","authors":"Xiang Zhang","doi":"10.3390/nano15010029","DOIUrl":null,"url":null,"abstract":"<p><p>The NiCo<sub>2</sub>O<sub>4</sub> Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCo<sub>2</sub>O<sub>4</sub> nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell. The asymmetric supercapacitor (NiCo<sub>2</sub>O<sub>4</sub> Nanosheets@Carbon fibers//Graphene oxide) displayed a high specific capacitance of 91 F g<sup>-1</sup> and excellent cycling stability with a capacitance retention of 94.5% at 5 A g<sup>-1</sup> after 10,000 cycles. The device also achieved a notable energy density of 52 Wh kg<sup>-1</sup> coupled with a power density of 3.5 kW kg<sup>-1</sup> and a high power density of 7.1 kW kg<sup>-1</sup> with an energy density of 21 Wh kg<sup>-1</sup>. This study shed light on the great potential of this asymmetric device as future supercapacitor.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010029","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The NiCo2O4 Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCo2O4 nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell. The asymmetric supercapacitor (NiCo2O4 Nanosheets@Carbon fibers//Graphene oxide) displayed a high specific capacitance of 91 F g-1 and excellent cycling stability with a capacitance retention of 94.5% at 5 A g-1 after 10,000 cycles. The device also achieved a notable energy density of 52 Wh kg-1 coupled with a power density of 3.5 kW kg-1 and a high power density of 7.1 kW kg-1 with an energy density of 21 Wh kg-1. This study shed light on the great potential of this asymmetric device as future supercapacitor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纤维布上介孔NiCo2O4纳米片作为不对称超级电容器先进电极的简易合成。
采用简便的共电沉积工艺成功合成了NiCo2O4 Nanosheets@Carbon纤维复合材料。介孔NiCo2O4纳米片在碳纤维表面垂直排列并相互交联,形成松散多孔的纳米结构。这些混合复合电极在三电极电池中表现出较高的比电容。该非对称超级电容器(NiCo2O4 Nanosheets@Carbon纤维//氧化石墨烯)具有91 F -1的高比电容和优异的循环稳定性,在5 a g-1下循环10,000次后电容保持率为94.5%。该器件还实现了52 Wh kg-1的显著能量密度,加上3.5 kW kg-1的功率密度和7.1 kW kg-1的高功率密度,能量密度为21 Wh kg-1。这项研究揭示了这种非对称器件作为未来超级电容器的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Anisotropic Elasticity, Spin-Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence. A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1