Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-01-06 DOI:10.3390/nano15010078
Hengyi Guo, Lingtao Wang, Xuzhao Liu, Paul Mativenga, Zhu Liu, Andrew G Thomas
{"title":"Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.","authors":"Hengyi Guo, Lingtao Wang, Xuzhao Liu, Paul Mativenga, Zhu Liu, Andrew G Thomas","doi":"10.3390/nano15010078","DOIUrl":null,"url":null,"abstract":"<p><p>Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film. This was followed by loading this film with chloroplatinic acid (H<sub>2</sub>PtCl<sub>6</sub>), followed by further irradiation with an ultraviolet (UV; 355 nm) laser, resulting in pyrolysis of H<sub>2</sub>PtCl<sub>6</sub> to form the SAC, along with a further reduction of the MOF to form a Pt-decorated laser-induced annealed MOF (Pt-LIA-ZIF8@ZIF67). The Pt-LIA-ZIF8@ZIF67 catalyst with a Pt loading of 0.86 wt. % exhibited exceptionally high activity for the HER in acidic conditions. The atomically dispersed Pt on the carbon substrate exhibited a small overpotential of 68.8 mV at 10 mA cm<sup>-2</sup> for the hydrogen evolution reaction with a mass activity 20.52 times that of a commercial Pt/C catalyst at an overpotential of 50 mV vs. RHE. Finally, we note that the synthesis method is simple, fast, and versatile, and potentially scalable for the mass production of SACs for electrocatalytic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film. This was followed by loading this film with chloroplatinic acid (H2PtCl6), followed by further irradiation with an ultraviolet (UV; 355 nm) laser, resulting in pyrolysis of H2PtCl6 to form the SAC, along with a further reduction of the MOF to form a Pt-decorated laser-induced annealed MOF (Pt-LIA-ZIF8@ZIF67). The Pt-LIA-ZIF8@ZIF67 catalyst with a Pt loading of 0.86 wt. % exhibited exceptionally high activity for the HER in acidic conditions. The atomically dispersed Pt on the carbon substrate exhibited a small overpotential of 68.8 mV at 10 mA cm-2 for the hydrogen evolution reaction with a mass activity 20.52 times that of a commercial Pt/C catalyst at an overpotential of 50 mV vs. RHE. Finally, we note that the synthesis method is simple, fast, and versatile, and potentially scalable for the mass production of SACs for electrocatalytic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光合成铂单原子析氢催化剂。
铂基非均相催化剂在电催化析氢反应(HER)中表现出优异的性能;然而,Pt的高成本和土壤稀缺意味着人们正在努力减少Pt的使用,同时最大限度地提高催化效率。本文采用两步激光退火工艺在mof衍生的碳衬底上合成了Pt单原子催化剂。激光辐照金属-有机骨架(MOF)薄膜(ZIF67@ZIF8复合材料)1064nm)的激光穿过冷冻干燥的MOF,形成了金属负载的石墨化薄膜。然后用氯铂酸(H2PtCl6)加载该膜,然后用紫外线(UV;355 nm)激光,导致H2PtCl6热解形成SAC,同时MOF进一步减少,形成pt修饰的激光诱导退火MOF (Pt-LIA-ZIF8@ZIF67)。在酸性条件下,Pt负载为0.86 wt. %的Pt-LIA-ZIF8@ZIF67催化剂表现出异常高的HER活性。原子分散在碳基体上的Pt在10 mA cm-2的过电位为68.8 mV,相对于RHE的过电位为50 mV时,其质量活性是商用Pt/C催化剂的20.52倍。最后,我们注意到该合成方法简单、快速、通用,并且具有可扩展性,可用于大规模生产用于电催化应用的SACs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
RETRACTED: Davarpanah, A. Parametric Study of Polymer-Nanoparticles-Assisted Injectivity Performance for Axisymmetric Two-Phase Flow in EOR Processes. Nanomaterials 2020, 10, 1818. Highly Efficient Conductivity Modulation via Stacked Multi-Gate Graphene Ambipolar Transistors. Insights into Growing Silica Around Monocrystalline Magnetite Nanorods Leading to Colloids with Improved Magnetic Properties-Obstacles and Solutions. MgO-Loaded Magnetic Crab Shell-Derived Biochar for Efficient Synergistic Adsorption of Heavy Metals and Dye: Characterization, Adsorption Performance and Mechanistic Study. Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1