Huiping Liu, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, Chao Ye
{"title":"Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.","authors":"Huiping Liu, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, Chao Ye","doi":"10.3390/nano15010071","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed. The traditional Basquin formula was used to predict the fatigue life of these fatigue samples. At the same time, a quantitative mechanical model related to the characteristic micro-defects parameter KAM and the Vickers hardness (H<sub>v</sub>) was established for the S30408 stainless steel during the low cycle fatigue damage process, and the prediction accuracy of the Vickers hardness is greater than 90%, which is significant and useful for the fatigue life prediction of the 304 stainless steels used in nuclear systems and the safe operation of the reactors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010071","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed. The traditional Basquin formula was used to predict the fatigue life of these fatigue samples. At the same time, a quantitative mechanical model related to the characteristic micro-defects parameter KAM and the Vickers hardness (Hv) was established for the S30408 stainless steel during the low cycle fatigue damage process, and the prediction accuracy of the Vickers hardness is greater than 90%, which is significant and useful for the fatigue life prediction of the 304 stainless steels used in nuclear systems and the safe operation of the reactors.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.