Ziqian Xin, Bingyuan Xue, Wenbo Chang, Xinping Zhang, Jia Shi
{"title":"Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities.","authors":"Ziqian Xin, Bingyuan Xue, Wenbo Chang, Xinping Zhang, Jia Shi","doi":"10.3390/nano15010063","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices. This paper outlines the principles of nonlinear optics and the magnetic structures of 2D materials, reviews recent progress in nonlinear optical studies, including magnetic structure detection and nonlinear optical imaging, and highlights their role in probing magnetic properties by combining second harmonic generation (SHG) and multispectral integration. Finally, we discuss the prospects and challenges for applying nonlinear optics to 2D magnetic materials, emphasizing their potential in next-generation photonic and spintronic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010063","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices. This paper outlines the principles of nonlinear optics and the magnetic structures of 2D materials, reviews recent progress in nonlinear optical studies, including magnetic structure detection and nonlinear optical imaging, and highlights their role in probing magnetic properties by combining second harmonic generation (SHG) and multispectral integration. Finally, we discuss the prospects and challenges for applying nonlinear optics to 2D magnetic materials, emphasizing their potential in next-generation photonic and spintronic devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.