Preparation of Zwitterionic Sulfobetaines and Study of Their Thermal Properties and Nanostructured Self-Assembling Features.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-01-02 DOI:10.3390/nano15010058
Yenglik Amrenova, Arshyn Zhengis, Arailym Yergesheva, Munziya Abutalip, Nurxat Nuraje
{"title":"Preparation of Zwitterionic Sulfobetaines and Study of Their Thermal Properties and Nanostructured Self-Assembling Features.","authors":"Yenglik Amrenova, Arshyn Zhengis, Arailym Yergesheva, Munziya Abutalip, Nurxat Nuraje","doi":"10.3390/nano15010058","DOIUrl":null,"url":null,"abstract":"<p><p>Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP). Their molecular weights, thermal behavior, and self-assembly properties were analyzed using gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and zeta potential measurements. The glass transition temperatures (Tg) ranged from 276.52 °C for pSBMAm to 313.69 °C for pSB4VP, while decomposition temperatures exhibited a similar trend, with pSBMAm degrading at 301.03 °C and pSB4VP at 387.14 °C. The polymers' self-assembly behavior was strongly dependent on pH and their surface charge, particularly under varying pH conditions: spherical micelles were observed at neutral pH, while fractal aggregates formed at basic pH. These results demonstrate that precise modifications of the chemical structure, specifically in the linear, imidazole, and pyridine moieties, enable fine control over the thermal properties and self-assembly behavior of polyzwitterions. Such insights are essential for tailoring polymer properties for targeted applications in filtration membranes, drug delivery systems, and solid polymer electrolytes, where thermal stability and self-assembly play crucial roles.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010058","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP). Their molecular weights, thermal behavior, and self-assembly properties were analyzed using gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and zeta potential measurements. The glass transition temperatures (Tg) ranged from 276.52 °C for pSBMAm to 313.69 °C for pSB4VP, while decomposition temperatures exhibited a similar trend, with pSBMAm degrading at 301.03 °C and pSB4VP at 387.14 °C. The polymers' self-assembly behavior was strongly dependent on pH and their surface charge, particularly under varying pH conditions: spherical micelles were observed at neutral pH, while fractal aggregates formed at basic pH. These results demonstrate that precise modifications of the chemical structure, specifically in the linear, imidazole, and pyridine moieties, enable fine control over the thermal properties and self-assembly behavior of polyzwitterions. Such insights are essential for tailoring polymer properties for targeted applications in filtration membranes, drug delivery systems, and solid polymer electrolytes, where thermal stability and self-assembly play crucial roles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两性离子磺胺甜菜碱的制备及其热性能和纳米自组装特性研究。
两性离子聚合物因其独特的特性而备受关注,如生物相容性、防污能力和对蛋白质吸附的抵抗力,使其成为广泛应用的有希望的候选者,包括药物输送、产油抑制剂和水净化膜。本研究报道了通过与1,3-丙磺酸酮反应对直链、乙烯基和芳香杂环官能团进行改性的两性离子单体和聚合物的合成和表征。合成了四种分子结构不同的两性离子聚合物:聚亚砜甜菜碱甲基丙烯酰胺(psbam)、聚亚砜甜菜碱-1-乙烯基咪唑(pSB1VI)、聚亚砜甜菜碱-2-乙烯基吡啶(pSB2VP)和聚亚砜甜菜碱-4-乙烯基吡啶(pSB4VP)。通过凝胶渗透色谱(GPC)、热重分析(TGA)、差示扫描量热法(DSC)、透射电子显微镜(TEM)和zeta电位测量分析了它们的分子量、热行为和自组装性能。psbam的玻璃化转变温度(Tg)为276.52℃~ 313.69℃,pSB4VP的分解温度也呈现出相似的变化趋势,psbam在301.03℃降解,pSB4VP在387.14℃降解。聚合物的自组装行为强烈依赖于pH及其表面电荷,特别是在不同的pH条件下:在中性pH下观察到球形胶束,而在碱性pH下形成分形聚集体。这些结果表明,化学结构的精确修饰,特别是在线性,咪唑和吡啶部分,可以很好地控制多两性离子的热性能和自组装行为。这些见解对于在过滤膜、药物输送系统和固体聚合物电解质中定制聚合物特性至关重要,其中热稳定性和自组装起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
RETRACTED: Davarpanah, A. Parametric Study of Polymer-Nanoparticles-Assisted Injectivity Performance for Axisymmetric Two-Phase Flow in EOR Processes. Nanomaterials 2020, 10, 1818. Highly Efficient Conductivity Modulation via Stacked Multi-Gate Graphene Ambipolar Transistors. Insights into Growing Silica Around Monocrystalline Magnetite Nanorods Leading to Colloids with Improved Magnetic Properties-Obstacles and Solutions. MgO-Loaded Magnetic Crab Shell-Derived Biochar for Efficient Synergistic Adsorption of Heavy Metals and Dye: Characterization, Adsorption Performance and Mechanistic Study. Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1