Ch V Katsiropoulos, G I Giannopoulos, P Pappas, C Galiotis
{"title":"Enhancing CFRP damping with graphene nanoplatelets: experiments versus finite element analysis.","authors":"Ch V Katsiropoulos, G I Giannopoulos, P Pappas, C Galiotis","doi":"10.1088/1361-6528/ada6be","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the enhancement of damping properties in carbon fiber-reinforced polymer (CFRP) composites by incorporating graphene nanoplatelets (GNPs) into the epoxy matrix. Epoxy and CFRP specimens with varying GNP concentrations, were developed and tested through free vibration experiments to measure damping ratios. Additionally, a computational model based on the finite element method was developed to simulate the damping behavior of these hybrid nanocomposites. Using periodic representative volume elements under sinusoidal axial loads, the model accurately predicted damping performance by calculating the time lag between applied loads and resulting deformations. Comparison of numerical results with experimental data revealed a strong correlation, confirming the model's effectiveness in capturing the influence of GNP mass fraction on damping enhancement.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada6be","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the enhancement of damping properties in carbon fiber-reinforced polymer (CFRP) composites by incorporating graphene nanoplatelets (GNPs) into the epoxy matrix. Epoxy and CFRP specimens with varying GNP concentrations, were developed and tested through free vibration experiments to measure damping ratios. Additionally, a computational model based on the finite element method was developed to simulate the damping behavior of these hybrid nanocomposites. Using periodic representative volume elements under sinusoidal axial loads, the model accurately predicted damping performance by calculating the time lag between applied loads and resulting deformations. Comparison of numerical results with experimental data revealed a strong correlation, confirming the model's effectiveness in capturing the influence of GNP mass fraction on damping enhancement.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.