Jijuan Ding, Fei Liu, Jiaxiong Zeng, Hang Gu, Jing Huang, Bo Wu, Longfei Shu, Qingyun Yan, Zhili He, Cheng Wang
{"title":"Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments.","authors":"Jijuan Ding, Fei Liu, Jiaxiong Zeng, Hang Gu, Jing Huang, Bo Wu, Longfei Shu, Qingyun Yan, Zhili He, Cheng Wang","doi":"10.1038/s41522-024-00638-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.0-97.7%) within sediments' lignocellulosic detritus, with a small fraction of lignin-degrading genes (1.24-1.98%) of lignin-degrading genes within the carbohydrate-active enzyme coding genes. Depth stratification was observed in genes and microbial communities involved in lignin depolymerization and mineralization of lignin monomer derivatives. Further microbe-centered analyses of biomass production rates and adaptive metabolism revealed diminished microbial C use efficiency potential and augmented \"enzyme latch\" with increasing sediment depths. These findings enhance our understanding of sedimentary organic C cycling and storage in coastal blue C ecosystems.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"5"},"PeriodicalIF":7.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00638-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.0-97.7%) within sediments' lignocellulosic detritus, with a small fraction of lignin-degrading genes (1.24-1.98%) of lignin-degrading genes within the carbohydrate-active enzyme coding genes. Depth stratification was observed in genes and microbial communities involved in lignin depolymerization and mineralization of lignin monomer derivatives. Further microbe-centered analyses of biomass production rates and adaptive metabolism revealed diminished microbial C use efficiency potential and augmented "enzyme latch" with increasing sediment depths. These findings enhance our understanding of sedimentary organic C cycling and storage in coastal blue C ecosystems.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.