Alanna S Hind, Reid A Mitchell, Olivia N Ferguson, Morgan Flynn, Satvir S Dhillon, Karine Badra, Kathryn M Milne, Danilo Iannetta, Michael S Koehle, Jordan A Guenette
{"title":"Sex differences in exercise-induced arterial hypoxemia and pulmonary edema following high-intensity exercise in highly trained endurance athletes.","authors":"Alanna S Hind, Reid A Mitchell, Olivia N Ferguson, Morgan Flynn, Satvir S Dhillon, Karine Badra, Kathryn M Milne, Danilo Iannetta, Michael S Koehle, Jordan A Guenette","doi":"10.14814/phy2.70190","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated sex differences in the development of pulmonary edema and exercise-induced arterial hypoxemia (EIAH) in well-trained endurance athletes during near-maximal exercise in a real-world setting. Twenty participants (10M vs. 10F; V̇O<sub>2</sub>peak: 69.3 (8.8) vs. 50.7 (4.1) ml∙kg<sup>-1</sup>∙min<sup>-1</sup>) underwent a maximal incremental treadmill test (visit 1) and a time trial on a steep trail (~2.5 km, ~800 m elevation gain) in North Vancouver (visit 2). Pulmonary edema was evaluated using handheld lung ultrasound ~10-15 min post-exercise and oxygen saturation (SpO<sub>2</sub>) was monitored using finger pulse oximetry. Males completed the time trial significantly faster than females (M: 31.5 (6.5) vs. F: 40.4 (7.5) min, p = 0.006), while females sustained a higher percentage of their visit 1 heart rate (M: 94 (1) vs. F: 96 (1) %max, p = 0.02). All participants developed EIAH, with no sex differences in end-exercise SpO<sub>2</sub> (M: 89 (4) % vs. F: 90 (3) %, respectively, p = 0.35). There was no evidence of pulmonary edema, assessed through ultrasound b-line scores, with no differences between sexes (M: 0.3 (1.0) vs. F: 0.5 (1.5), respectively, p = 0.60). Pulmonary edema is an unlikely contributor to EIAH in endurance athletes performing near-maximal time trial exercise in a real-world setting.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 1","pages":"e70190"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated sex differences in the development of pulmonary edema and exercise-induced arterial hypoxemia (EIAH) in well-trained endurance athletes during near-maximal exercise in a real-world setting. Twenty participants (10M vs. 10F; V̇O2peak: 69.3 (8.8) vs. 50.7 (4.1) ml∙kg-1∙min-1) underwent a maximal incremental treadmill test (visit 1) and a time trial on a steep trail (~2.5 km, ~800 m elevation gain) in North Vancouver (visit 2). Pulmonary edema was evaluated using handheld lung ultrasound ~10-15 min post-exercise and oxygen saturation (SpO2) was monitored using finger pulse oximetry. Males completed the time trial significantly faster than females (M: 31.5 (6.5) vs. F: 40.4 (7.5) min, p = 0.006), while females sustained a higher percentage of their visit 1 heart rate (M: 94 (1) vs. F: 96 (1) %max, p = 0.02). All participants developed EIAH, with no sex differences in end-exercise SpO2 (M: 89 (4) % vs. F: 90 (3) %, respectively, p = 0.35). There was no evidence of pulmonary edema, assessed through ultrasound b-line scores, with no differences between sexes (M: 0.3 (1.0) vs. F: 0.5 (1.5), respectively, p = 0.60). Pulmonary edema is an unlikely contributor to EIAH in endurance athletes performing near-maximal time trial exercise in a real-world setting.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.