Amal Hmaissia, Edgar Martín Hernández, Céline Vaneeckhaute
{"title":"Comparing sewage sludge vs. digested sludge for starting-up thermophilic two-stage anaerobic digesters: Operational and economic insights.","authors":"Amal Hmaissia, Edgar Martín Hernández, Céline Vaneeckhaute","doi":"10.1016/j.wasman.2024.12.032","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in anaerobic digestion (AD), full-scale implementation faces significant challenges, particularly during the start-up phase, where inoculum selection is crucial. This study examines the impact of inoculum choice on the operational and economic performance of thermophilic digesters during the start-up phase. Methanogenic reactors R3 and R4 were inoculated with digested sludge (DiS) and diluted sewage sludge (DSS), respectively, and fed with hydrolyzed source-sorted organic fraction of municipal solid waste (SS-OFMSW) and thickened sewage sludge, which were processed in R1 and R2, serving as acidogenic reactors. A two-stage AD configuration was employed to mitigate inhibitory effects associated with the undigested inoculum (DSS). This approach enabled the establishment of methanogenic activity in R4 when the AD system is initiated with DSS. However, R3 outperformed R4, achieving 49 % of the feedstock's theoretical methane potential compared to 15 % in R4. Methane production and volatile solids (VS) processing costs in R4 were 18 and 3 times higher than in R3, respectively. R3's superior performance was attributed to DiS's diverse bacterial community, with over 66 % of genera involved in hydrolysis, volatile fatty acid production, and syntrophic methane production. In contrast, DSS was dominated by Trichococcus and Lactococcus (75.4 %), primarily involved in butyrate oxidation and lactate production. This study provides valuable insights into effective inoculum selection for the start-up of full-scale digesters.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"24-35"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.032","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advances in anaerobic digestion (AD), full-scale implementation faces significant challenges, particularly during the start-up phase, where inoculum selection is crucial. This study examines the impact of inoculum choice on the operational and economic performance of thermophilic digesters during the start-up phase. Methanogenic reactors R3 and R4 were inoculated with digested sludge (DiS) and diluted sewage sludge (DSS), respectively, and fed with hydrolyzed source-sorted organic fraction of municipal solid waste (SS-OFMSW) and thickened sewage sludge, which were processed in R1 and R2, serving as acidogenic reactors. A two-stage AD configuration was employed to mitigate inhibitory effects associated with the undigested inoculum (DSS). This approach enabled the establishment of methanogenic activity in R4 when the AD system is initiated with DSS. However, R3 outperformed R4, achieving 49 % of the feedstock's theoretical methane potential compared to 15 % in R4. Methane production and volatile solids (VS) processing costs in R4 were 18 and 3 times higher than in R3, respectively. R3's superior performance was attributed to DiS's diverse bacterial community, with over 66 % of genera involved in hydrolysis, volatile fatty acid production, and syntrophic methane production. In contrast, DSS was dominated by Trichococcus and Lactococcus (75.4 %), primarily involved in butyrate oxidation and lactate production. This study provides valuable insights into effective inoculum selection for the start-up of full-scale digesters.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)